Abstract

We numerically demonstrate that a periodic array of metallic nanorods sustains a maximum near-field enhancement and a far field (FF)-induced transparency at the same energy and in-plane momentum. The coupling of bright and dark plasmonic lattice resonances, and electromagnetic retardation along the nanorod length, are responsible for this effect. A standing wave with a quadrupolar field distribution is formed, giving rise to a collective suppression of FF scattering and simultaneously enhanced local fields.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks

Kosei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Dai Ohnishi, Keiji Sasaki, and Hiroaki Misawa
Opt. Express 15(25) 16527-16539 (2007)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas
Opt. Express 21(4) 4250-4262 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (3)

» Media 1: MOV (2743 KB)     
» Media 2: MOV (2885 KB)     
» Media 3: MOV (2667 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription