Abstract

A quasi-phase matching (QPM) structure based on phase correction by inserting a “healing block” (HB) of length dHB into M regular domains of constant length d is proposed to enhance the nonlinear conversion efficiency when the first-order QPM domain length d1 is too short to be reliably fabricated. Second-harmonic conversion efficiency 4.69 times higher than that of a third-order QPM grating has been experimentally demonstrated by using HB-QPM where all the domains are longer than 1.08d1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  2. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef]
  4. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Opt. Lett. 35, 2340 (2010).
    [CrossRef]
  5. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, Opt. Lett. 30, 2164 (2005).
    [CrossRef]
  6. H. Chan, Z. Hsieh, L. Peng, and A. H. Kung, Opt. Lett. 37, 2805 (2012).
    [CrossRef]
  7. R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef]
  8. J.-Y. Lai, Y.-J. Liu, H.-Y. Wu, Y.-H. Chen, and S.-D. Yang, Opt. Express 18, 5328 (2010).
    [CrossRef]
  9. J.-Y. Lai, C.-W. Hsu, N. Hsu, Y.-H. Chen, and S.-D. Yang, Opt. Lett. 37, 1184 (2012).
    [CrossRef]
  10. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

2012 (2)

2010 (2)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

2005 (2)

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, Opt. Lett. 30, 2164 (2005).
[CrossRef]

1998 (1)

1996 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Bisson, S. E.

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chan, H.

Chen, Y.-H.

Eckardt, R. C.

Fejer, M. M.

Gallmann, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

Heese, C.

Hsieh, Z.

Hsu, C.-W.

Hsu, N.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Keller, U.

Kulp, T. J.

Kung, A. H.

Lai, J.-Y.

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Liu, Y.-J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Myers, L. E.

Parameswaran, K. R.

Peng, L.

Phillips, C. R.

Powers, P. E.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B. 91, 343 (2008).

Weiner, A. M.

Wu, H.-Y.

Yang, S.-D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of HB-QPM and the corresponding domain orientation distribution function g(x), (b) the complex numbers {Gn} contributed by uniformly spaced domain boundaries when the domain length d is not an odd multiple of d1, (c) the complex numbers {Gn} and Gsub due to the individual domain boundaries (solid) and the entire substructure (dashed) with M=1. All the following substructures will contribute to the same Gsub and can be added up constructively.

Fig. 2.
Fig. 2.

(a) Optimal number of regular domains (solid) and the corresponding normalized HB length dHB/d1 (dotted), as well as (b) the normalized conversion efficiency μ (solid, achieved by using the optimal M and dHB), as functions of the normalized regular domain length d/d1. The efficiencies due to the second-order (dashed) and third-order (dashed–dotted) QPM are also shown for comparison.

Fig. 3.
Fig. 3.

(a) Normalized SHG efficiencies versus the uniform overpoling ratio rop for third-order QPM (dashed) and HB-QPM with an odd (solid) and even (dashed–dotted) number of regular domains. Schematic and complex numbers {Gn}, {Gn} of HB-QPM structures with (b) underpoling, one regular domain, and (c) overpoling, two regular domains, respectively.

Fig. 4.
Fig. 4.

Experimentally measured phase matching tuning curves of QPM1 (diamonds), QPM2 (circles), and QPM3 (squares), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η=ηnorm×|G|2,G=1L0Lg(x)ei(Δk·x)dx,
G=G0+GN+2n=1N1Gn,Gn=eiϕnΔk×L,ϕn=nπ+Δk×xn,
dHB=(2p+1M×Δ)d1,
Gsub=2ei(M×δ/2)Δk×Lsub×sin[(M+1)δ/2]sin(δ/2),G(1)=2π,
μ=|GsubG(1)|2={1M+2p+1×sin[(M+1)δ/2]sin(δ/2)}2.
cosα+cos(δβ)+cos(δ+α)>1+2cosδ(ifM=2).

Metrics