Abstract

We have experimentally studied multiple side-band generation for two-frequency components injected into a tapered amplifier (TA) and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry–Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power, and TA current. In laser-cooling potassium40 and potassium41 with hyperfine splitting of 1.3 GHz and 254 MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
    [CrossRef]
  2. J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
    [CrossRef]
  3. G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
    [CrossRef]
  4. M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
    [CrossRef]
  5. G. Ferrari, M. Mewes, F. Schreck, and C. Salomon, Opt. Lett. 24, 151 (1999).
    [CrossRef]
  6. T. Q. Tien, M. Maiwald, B. Sumpf, G. Erbert, and G. Tränkle, Opt. Lett. 33, 2692 (2008).
    [CrossRef]
  7. M. Chi, G. Erbert, B. Sumpf, and P. M. Petersen, Opt. Lett. 35, 1545 (2010).
    [CrossRef]
  8. F. C. Cruz, M. C. Stowe, and J. Ye, Opt. Lett. 31, 1337 (2006).
    [CrossRef]
  9. G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
    [CrossRef]

2010

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

M. Chi, G. Erbert, B. Sumpf, and P. M. Petersen, Opt. Lett. 35, 1545 (2010).
[CrossRef]

2008

2006

2003

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

2001

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

1999

1990

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Akamatsu, D.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Akiba, K.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Arikawa, M.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Brecha, R. J.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Chi, M.

Cruz, F. C.

Erbert, G.

Ferrari, G.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

G. Ferrari, M. Mewes, F. Schreck, and C. Salomon, Opt. Lett. 24, 151 (1999).
[CrossRef]

Furusawa, A.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Gauthier, D. J.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Honda, K.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Inguscio, M.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Jiang, K. J.

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

Kozuma, M.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Lezama, A.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Maiwald, M.

Mewes, M.

Modugno, G.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Mossberg, T. W.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Nagatsuka, S.

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Petersen, P. M.

Roati, G.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Salomon, C.

Schreck, F.

Simoni, A.

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Stowe, M. C.

Sumpf, B.

Tien, T. Q.

Tränkle, G.

Wang, J.

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

Wu, Q. L.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Xu, P.

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

Yang, G. Q.

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

Ye, J.

Zhan, M. S.

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

Zhu, Y. F.

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

Opt. Lett.

Phys. Rev. A

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 41, 6574 (1990).
[CrossRef]

J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, Phys. Rev. A 68, 063810 (2003).
[CrossRef]

G. Q. Yang, P. Xu, J. Wang, Y. F. Zhu, and M. S. Zhan, Phys. Rev. A 82, 045804 (2010).
[CrossRef]

M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, and M. Kozuma, Phys. Rev. A 81, 021605(R) (2010).
[CrossRef]

Science

G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of the experimental setup. DL, diode laser; OI, optical isolator; HWP, half-wave plate; PBS, polarization beam splitter; AOM, acousto-optic modulator; TA, tapered amplifier; PD, high-speed photodetector; FPI, Fabry–Perot interferometer. The dotted line indicates the reference laser beam.

Fig. 2.
Fig. 2.

Generated side bands versus the frequency difference, where the injected power of both components is 15 mW and the TA current is 1.8 A. (a) Frequency-beat signal for an 80 MHz frequency difference (the inset is for a 200 MHz frequency difference). (b) Side-band number versus the frequency difference.

Fig. 3.
Fig. 3.

Power distribution of each side band with a 15 mW injection laser power and a 200 MHz frequency difference. (a) Side-band signal measured with an FPI. In a 1.8 A TA current, up to +3δ and 3δ side bands are obvious on the spectrum. (b) Power distribution of each side band. The black square is for +δ, the green uptriangle for δ, the red circle for +2δ, and the blue downtriangle for 2δ.

Fig. 4.
Fig. 4.

Total power of all side bands. The black triangle denotes the total power versus the TA current, and the red square denotes that versus the injection power.

Metrics