Abstract

Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization controllable optical devices, such as the holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (Tni) that the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is discussed with two types of LC composites comprised of isotropic and LC diacrylate monomers. The holographic memory formed by the LC and LC diacrylate monomer performs precise reconstruction of the context information for ORGAs at high temperatures more than 150°C.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Butler and M. S. Malcuit, Opt. Lett. 25, 420 (2000).
    [CrossRef]
  2. M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002).
    [CrossRef]
  3. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
    [CrossRef]
  4. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).
  5. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, Appl. Opt. 49, 4255 (2010).
    [CrossRef]
  6. A. Ogiwara and M. Watanabe, Appl. Opt. 51, 5168 (2012).
    [CrossRef]
  7. A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, Appl. Opt. 41, 4585 (2002).
    [CrossRef]
  8. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
    [CrossRef]
  9. I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
    [CrossRef]
  10. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, Appl. Opt. 49, 4633 (2010).
    [CrossRef]

2012

2010

2006

I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
[CrossRef]

2004

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

2002

M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, Appl. Opt. 41, 4585 (2002).
[CrossRef]

2000

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

J. J. Butler and M. S. Malcuit, Opt. Lett. 25, 420 (2000).
[CrossRef]

An, X.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Ay, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Barna, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

Butler, J. J.

Ellabban, M. A.

I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Emoto, A.

Fally, M.

I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Fossum, E.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Fuh, A. Y.-G.

Galstian, T.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

Galstyan, A. V.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

Hakobyan, R. S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

Harbour, S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

Ho, Y.-H.

Holmes, M. E.

M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Kakiuchida, H.

Kobayashi, F.

Lee, C.-R.

Mabuchi, T.

Malcuit, M. S.

M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002).
[CrossRef]

J. J. Butler and M. S. Malcuit, Opt. Lett. 25, 420 (2000).
[CrossRef]

Mok, F.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Mumbru, J.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

Ogiwara, A.

Olenik, I. D.

I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Ono, H.

Panotopoulos, G.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Psaltis, D.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

Tazawa, M.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

Watanabe, M.

Yoshimura, K.

Appl. Opt.

J. Appl. Phys.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).
[CrossRef]

Opt. Commun.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, Opt. Commun. 241, 23 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. E

M. E. Holmes and M. S. Malcuit, Phys. Rev. E 65, 066603 (2002).
[CrossRef]

I. D. Olenik, M. Fally, and M. A. Ellabban, Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Proc. SPIE

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, Proc. SPIE 4089, 763 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Overview of an ORGA comprising a gate-array VLSI, a holographic memory, and a laser array.

Fig. 2.
Fig. 2.

Optical setup for fabricating HPDLC memory using a laser interferometer with a photomask.

Fig. 3.
Fig. 3.

Temperature dependence of diffraction efficiencies of HPDLC gratings fabricated by (a) the isotropic monomer mixtures with the nematic LC (BL024), and (b) the LC diacrylate monomer with the nematic LC (MLC7023) at rubbed direction of 0°.

Fig. 4.
Fig. 4.

Effects of thermal modulation on the context images for AND circuit reconstructed under various temperatures at (a) 25°C, (b) 75°C, and (c) 150°C. The images from A1 to C1 are obtained by the isotropic monomer mixtures with the nematic LC (BL024), and the images from A2 to C2 are obtained by the LC diacrylate monomer with the nematic LC (MLC7023) at rubbed direction of 0°.

Metrics