Abstract

A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss 0.42dB in the on state, the isolation 19dB in the off state and the switch off and on ratio Pon/Poff about 72. The frequency band at the level of 15dB of the resonance curve in off state is about 160 GHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sharkawy, S. Shi, and D. W. Prather, Opt. Express 10, 1048 (2002).
    [CrossRef]
  2. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
    [CrossRef]
  3. M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
    [CrossRef]
  4. Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
    [CrossRef]
  5. W. Smigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwollghem, Opt. Lett. 35, 568 (2010).
    [CrossRef]
  6. Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
    [CrossRef]
  7. V. Dmitriev, M. Kawakatsu, and F. de Souza, Opt. Lett. 37, 3192 (2012).
    [CrossRef]
  8. www.comsol.com .
  9. M. C. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, Opt. Express 20, 9624 (2012).
    [CrossRef]
  10. H. Takeda and S. John, Phys. Rev. A 78, 023804 (2008).
    [CrossRef]
  11. J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
    [CrossRef]
  12. Z. Wang and S. Fan, Photon. Nanostruct. Fundam. Applic. 4, 132 (2006).
    [CrossRef]

2012 (2)

2010 (2)

2009 (1)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

2008 (1)

H. Takeda and S. John, Phys. Rev. A 78, 023804 (2008).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, Photon. Nanostruct. Fundam. Applic. 4, 132 (2006).
[CrossRef]

2005 (1)

2003 (1)

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

2002 (1)

1969 (1)

J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
[CrossRef]

Basu, S.

Beggs, D. M.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Cairns, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Dagens, B.

de Souza, F.

Dimmock, J. O.

J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
[CrossRef]

Dmitriev, V.

Fan, S.

Z. Wang and S. Fan, Photon. Nanostruct. Fundam. Applic. 4, 132 (2006).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef]

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Fratello, V. J.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Gralak, B.

Guenneau, S.

Hurwitz, C. E.

J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
[CrossRef]

John, S.

H. Takeda and S. John, Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Kawakatsu, M.

Krauss, T. F.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Levy, M.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Magdenko, L.

Merzlikin, A. M.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

O’Faolain, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Pinnepalli, S.

Prather, D. W.

Reed, T. B.

J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
[CrossRef]

Romero-Vivas, J.

Sekhar, M. C.

Sharkawy, A.

Shi, S.

Singh, M. R.

Smigaj, W.

Takeda, H.

H. Takeda and S. John, Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Vanwollghem, M.

Wang, Z.

Z. Wang and S. Fan, Photon. Nanostruct. Fundam. Applic. 4, 132 (2006).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef]

White, T. P.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Wu, Z.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Yanik, M.

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, Appl. Phys. Lett. 14, 49 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Photon. Nanostruct. Fundam. Applic. (1)

Z. Wang and S. Fan, Photon. Nanostruct. Fundam. Applic. 4, 132 (2006).
[CrossRef]

Phys. Rev. A (1)

H. Takeda and S. John, Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Other (1)

www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical switch schemes in the (a) off and (b) on states with dipole mode in MO cavity.

Fig. 2.
Fig. 2.

Frequency splitting between right- and left-rotating modes of resonator versus parameter g.

Fig. 3.
Fig. 3.

Losses in rectilinear PhC waveguide in nonmagnetized and magnetized states.

Fig. 4.
Fig. 4.

Optical switch frequency responses of power transmission in on and off states for excitation at port 1.

Fig. 5.
Fig. 5.

Distribution of component Hz of ac magnetic field in switch excited at port 1 in off state.

Fig. 6.
Fig. 6.

Distribution of component Hz of ac magnetic field in optical switch excited at port 1 in on state.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[S]=|S11S12S21S22|.
[S]on=|0110|,[S]off=|1001|.
ε=ε0[εrig0igεr000εr],

Metrics