Abstract

Grating structures are designed at the inner wall of the Fabry–Perot (FP) resonator to enhance the performance of an FP optical filter. The rectangular grating or triangular grating (TG) structures allows the light to be propagated effectively through the FP resonator. Attributed to the grating structures, the spectrum intensity of a FP resonator with grating structures is calculated to be 4.5-fold higher than that of a FP resonator with slot. In addition, the Q-factor of the resonant peak for a FP resonator with hybrid TG structure and two slots is 9.5-fold and 4.7-fold higher than that of a FP resonator with one slot and TG configurations, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gat, Proc. SPIE 4056, 50 (2000).
    [CrossRef]
  2. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
    [CrossRef]
  3. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
    [CrossRef]
  4. P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003).
    [CrossRef]
  5. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
    [CrossRef]
  6. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
    [CrossRef]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  8. M. Lipson, IEEE J. Lightwave Technol. 23, 4222 (2005).
    [CrossRef]
  9. C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
    [CrossRef]
  10. B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
    [CrossRef]
  11. Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
    [CrossRef]
  12. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 1154 (1993).
    [CrossRef]
  13. W. H. Southwell, J. Opt. Soc. Am. A 8, 549 (1991).
    [CrossRef]
  14. J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
    [CrossRef]
  15. C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
    [CrossRef]
  16. A. Lipson and E. M. Yeatman, Opt. Lett. 31, 395 (2006).
    [CrossRef]

2011 (1)

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

2010 (2)

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

2009 (1)

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

2008 (2)

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
[CrossRef]

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
[CrossRef]

2006 (1)

2005 (1)

M. Lipson, IEEE J. Lightwave Technol. 23, 4222 (2005).
[CrossRef]

2004 (1)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

2003 (1)

P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003).
[CrossRef]

2002 (1)

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

2000 (1)

N. Gat, Proc. SPIE 4056, 50 (2000).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

1993 (1)

1991 (1)

1963 (1)

C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
[CrossRef]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

Bae, B.-J.

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
[CrossRef]

Chang, C. H.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Chrostowski, L.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Gat, N.

N. Gat, Proc. SPIE 4056, 50 (2000).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Höglund, G.

C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
[CrossRef]

Hong, E.-J.

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Hong, S.-H.

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Hsu, W. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

Huang, K. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003).
[CrossRef]

Johnson, N. P.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
[CrossRef]

Jung, G.-Y.

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Lalanne, P.

P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003).
[CrossRef]

Lee, H.

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Lin, Y. S.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

Lipson, A.

Lipson, M.

M. Lipson, IEEE J. Lightwave Technol. 23, 4222 (2005).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Masson, J.

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Morris, G. M.

Ottoson, D.

C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
[CrossRef]

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

Pathak, R.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Peter, Y. A.

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

Poulin, A.

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

Pruessner, M. W.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
[CrossRef]

Rabinovich, W. S.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
[CrossRef]

Raguin, D. H.

Rue, R. M. D. L.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
[CrossRef]

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

Sorel, M.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
[CrossRef]

Southwell, W. H.

St-Gelais, R.

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

Stievater, T. H.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
[CrossRef]

Sun, D.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Yang, S.

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Yeatman, E. M.

Yeh, J. A.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

Zain, A. R. M.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011).
[CrossRef]

IEEE J. Lightwave Technol. (1)

M. Lipson, IEEE J. Lightwave Technol. 23, 4222 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003).
[CrossRef]

J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

J. Insect Physiol. (1)

C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

N. Gat, Proc. SPIE 4056, 50 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of FP resonators; (b)–(d) are top views of FP resonator with slot, rectangular grating (RG), and triangular grating (TG) structures, respectively. (Where WSi=770nm, Wair=875nm, LRG=LTG is varied from 474 to 1422 nm, PRG is varied from 500 to 4000 nm, and PTG is from 250 to 1000 nm, respectively.)

Fig. 2.
Fig. 2.

(a) Spectra of FP with slot, RG, and TG structures, respectively, at initial state (FP cavity is 5250 nm); and (b) spectra of FP filter with TG structures when shrunk FP cavity by 400 nm per step.

Fig. 3.
Fig. 3.

Spectra of FP filters with (a) RG; (b) TG of different periods, peak intensity of FP filters with RG and TG for different; (c) grating size; and (d) grating length.

Fig. 4.
Fig. 4.

(a)–(c) Spectra of FP resonator with TG, TG plus one slot, and TG plus two slots, respectively. (FP cavity is 5250 nm); (d)–(f) are schematic top view drawings of FP resonators in configurations (a)–(c), respectively.

Tables (1)

Tables Icon

Table 1. Result Summary for the FP Filters of Five Different Configurations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q=λFWHM=λ0FFSR,
F(R)=πR(λ)1R(λ),
R=|(n0nsneff2)(n0ns+neff2)|2,T=4n0nsneff2|(n0ns+neff2)|2,
neff=|[1f+fns2][f+(1f)ns2]+ns22[f+(1f)ns2]|1/2,
i=1Nfi(ni2neff2)(ni2+2neff2)=0.

Metrics