Abstract

We introduce a Fourier transform imaging spectropolarimeter composed of a simultaneous polarization modulator and a Fourier transform spectrometer without slit. The spectropolarimeter enables the generation of four sets of fringe patterns with different polarization states of light from an object point. Fourier transform of the fringe patterns provides four equations of Stokes parameters in various wavenumbers. And we can obtain the full-stokes vector from the equations. The most significant advantage of the method is that the four polarized fringe patterns are obtained simultaneously and separated without aliasing. Additionally, the advantages of the Fourier transform spectrometer are maintained, such as high radiative throughput.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
    [CrossRef]
  2. K. L. Coulson, Appl. Opt. 19, 3469 (1980).
    [CrossRef]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, Appl. Opt. 45, 5453 (2006).
    [CrossRef]
  4. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, Appl. Opt. 33, 7412 (1994).
    [CrossRef]
  5. N. J. Pust and J. A. Shaw, Appl. Opt. 45, 5470 (2006).
    [CrossRef]
  6. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  7. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, Opt. Express 15, 12792 (2007).
    [CrossRef]
  8. J. Craven and M. W. Kudenov, Opt. Eng. 49, 053602 (2010).
    [CrossRef]
  9. J. S. Tyo and T. S. Turner, Appl. Opt. 40, 1450 (2001).
    [CrossRef]
  10. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, Opt. Express 18, 11622 (2010).
    [CrossRef]
  11. D. G. Soenksen, Y. Garini, and I. Bar-Am, SPIE 2678, 303 (1996).
    [CrossRef]

2010

2007

2006

2004

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

2001

1999

1996

D. G. Soenksen, Y. Garini, and I. Bar-Am, SPIE 2678, 303 (1996).
[CrossRef]

1994

1980

Bar-Am, I.

D. G. Soenksen, Y. Garini, and I. Bar-Am, SPIE 2678, 303 (1996).
[CrossRef]

Barducci, A.

Bergstralh, J.

Chenault, D. B.

Coulson, K. L.

Craven, J.

J. Craven and M. W. Kudenov, Opt. Eng. 49, 053602 (2010).
[CrossRef]

Dereniak, E. L.

Garini, Y.

D. G. Soenksen, Y. Garini, and I. Bar-Am, SPIE 2678, 303 (1996).
[CrossRef]

Gerhart, G. R.

Glenar, D. A.

Goldstein, D. L.

Guzzi, D.

Hagen, N. A.

Hillman, J. J.

Homma, K.

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

Kato, T.

Kudenov, M. W.

Kurosaki, H.

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

Lastri, C.

Marcoionni, P.

Nardino, V.

Oka, K.

Pippi, I.

Pust, N. J.

Saif, B.

Shaw, J. A.

Shibayama, M.

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

Shingu, H.

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

Soenksen, D. G.

D. G. Soenksen, Y. Garini, and I. Bar-Am, SPIE 2678, 303 (1996).
[CrossRef]

Turner, T. S.

Tyo, J. S.

Yamamoto, H.

K. Homma, H. Shingu, H. Yamamoto, H. Kurosaki, and M. Shibayama, Proc. SPIE 5234, 638 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Basic structure of the SPM Fourier-transform spectropolarimeter. (a) The fast axis of the retarders, (b) the transmission axis of the polarizers, and (c) D0, D1, D2, and D3 are the four image points of a single point on the target.

Fig. 2.
Fig. 2.

(a) Color model used as the target and (b) one of the captured images.

Fig. 3.
Fig. 3.

Four polarization fringe patterns of an object point, I0, I1, I2, and I3.

Fig. 4.
Fig. 4.

(a) Recovery spectrum of four polarization states and (b) normalized Stokes parameters. Dashed and solid curves show the theoretical and experimental values, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

In(Δ)=σ1σ2(1+cos2πσΔ)(MR(n)MP(n)Sin(σ))dσ,
I0(Δ)=σ1σ2(1+cos(2πσΔ))(S0(σ)+S1(σ))dσ,
I1(Δ)=σ1σ2(1+cos(2πσΔ))(S0(σ)+S2(σ))dσ,
I2(Δ)=σ1σ2(1+cos(2πσΔ))(S0(σ)S1(σ))dσ,
I3(Δ)=σ1σ2(1+cos(2πσΔ))(S0(σ)+S2(σ)cos(δ(σ))+S3(σ)sin(δ(σ)))dσ,
S0(σ)+S1(σ)=B0(σ),
S0(σ)+S2(σ)=B1(σ),
S0(σ)S1(σ)=B2(σ),
S0(σ)+S2(σ)cos(δ(σ))+S3(σ)sin(δ(σ))=B3(σ),
S0(σ)=12(B0(σ)+B2(σ)),
S1(σ)=12(B0(σ)B2(σ)),
S2(σ)=B1(σ)12(B0(σ)+B2(σ)),
S3(σ)=B3(σ)S0(σ)S2(σ)cos(δ(σ))sin(δ(σ)).

Metrics