Abstract

Based on an analysis of the surface admittance of a plasmonic film with a substrate, we propose an ultrathin quarter-wave plate consisting of a periodic plane array of symmetrical L-shaped plasmonic antennas. The period, which determines the coupling among L-shaped antennas, is an important parameter for optimizing the performance of the structure. Numerical simulation results show that an Au quarter-wave plate designed in this Letter can efficiently convert a linearly polarized light at normal incidence into circularly polarized light, whose ellipticity is 0.994 at an operating wavelength of 1550 nm. The thickness is only 30 nm, which is nearly 1/50 of the wavelength of incident light.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, Opt. Lett. 37, 698 (2012).
    [CrossRef]
  2. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, Opt. Lett. 36, 1626 (2011).
    [CrossRef]
  3. A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
    [CrossRef]
  4. A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012).
    [CrossRef]
  5. E. H. Khoo, E. P. Li, and K. B. Crozier, Opt. Lett. 36, 2498 (2011).
    [CrossRef]
  6. Y. Zhao and A. Alù, Phys. Rev. B 84, 205428 (2011).
    [CrossRef]
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
    [CrossRef]
  8. Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
    [CrossRef]
  9. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
    [CrossRef]

2012 (3)

2011 (5)

A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, Opt. Lett. 36, 1626 (2011).
[CrossRef]

E. H. Khoo, E. P. Li, and K. B. Crozier, Opt. Lett. 36, 2498 (2011).
[CrossRef]

Y. Zhao and A. Alù, Phys. Rev. B 84, 205428 (2011).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
[CrossRef]

2008 (1)

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Albrektsen, O.

Alù, A.

Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
[CrossRef]

Y. Zhao and A. Alù, Phys. Rev. B 84, 205428 (2011).
[CrossRef]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

Bozhevolnyi, S. I.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Crozier, K. B.

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

Engheta, N.

Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Guo, C. C.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Khoo, E. H.

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

Li, E. P.

Lin, L.

Liu, K.

Ma, T.

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

Nielsen, M. G.

Pors, A.

Roberts, A.

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Valle, G. D.

Willatzen, M.

Yang, B.

Ye, W. M.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Yuan, X. D.

Zhao, Y.

Y. Zhao and A. Alù, Phys. Rev. B 84, 205428 (2011).
[CrossRef]

Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
[CrossRef]

Zhu, Z. H.

Metamaterials (1)

Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

Y. Zhao and A. Alù, Phys. Rev. B 84, 205428 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef]

Science (2)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ultrathin quarter-wave plate consisting of a periodic plane array of symmetrical L-shaped Au antennas in a square lattice. The right inset shows one unit cell of the array and the corresponding geometrical parameters: the width of the antenna arms W, the length L, the thickness H, the period P, and the thickness D of substrate. A^ and S^ indicate two orthogonally polarized directions of eigenmodes. The illumination is done by a normally incident plane wave.

Fig. 2.
Fig. 2.

Normalized surface admittance spectra of the array of Au antennas shown in Fig. 1 with W=106nm, L=396nm, P=490nm, and H=30nm. (a), (c) are the real part and imaginary part of KA, respectively, and (b), (d) are the corresponding values of KS, respectively.

Fig. 3.
Fig. 3.

Resonance frequencies of the array of L-shaped Au antennas shown in Fig. 1 with period varying from 0.41 to 0.57 μm. (a) and (b) correspond to the antisymmetrical and symmetrical modes, respectively. The other structure parameters are similar to those shown in Fig. 2. The two insets show the normalized electric field intensity distribution of two different eigenmodes for A^ and S^ polarized light with P=0.48μm.

Fig. 4.
Fig. 4.

(a) Ellipticity spectra of the transmitted light through the proposed quarter-wave plate with the normal incident light polarized along y axis for different periods. (b) Sin2χ spectra of the same case with normal incident light of left circular polarization (LCP) and right circular polarization (RCP). The other structure parameters are similar to those shown in Fig. 2.

Fig. 5.
Fig. 5.

Transmittance, reflectance, and absorption spectra for the quarter-wave plate. The structure parameters are similar to those shown in Fig. 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T=[TA00TS],
Y=2ε0μ0[TA1κ00TS1κ],κ=12(1+εtε0),
Y=2ε0μ0[KA00KS],
ReKA+κ=±ImKSandReKS+κ=ImKA.
KA=KS=κi,|T|2=12κ2εtε012.
ε(ω)=εωp2/(ω2+iω/τ).
sin2χ=2ExmEymExm2+Eym2sin(δyδx).
E=Exmeiδxex+Eymeiδyey.

Metrics