Abstract

We report a fiber laser design that is capable of producing switchable transverse modes through wavelength tuning. The transverse mode switching is realized by exploiting the particular transverse mode-wavelength association characteristics of the few-mode fiber Bragg grating. Different transverse mode outputs with high spatial mode quality can be obtained by adjusting the oscillating wavelength with a tunable filter within the fiber laser cavity. For each of the spatial mode outputs, the laser operates at the corresponding single wavelength with narrow linewidth. Through adding polarization controllers in the laser cavity, output modes with cylindrical vector polarization are also realized.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, J. Lightwave Technol. 18, 230 (2000).
    [CrossRef]
  2. C. Lu and Y. Cui, J. Lightwave Technol. 24, 598 (2006).
    [CrossRef]
  3. S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
    [CrossRef]
  4. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, Opt. Lett. 31, 1794 (2006).
    [CrossRef]
  5. K. H. Wanser, Proc. SPIE 2360, 265 (1994).
    [CrossRef]
  6. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
    [CrossRef]
  7. D. S. Moon, U. C. Paek, and Y. Chung, Opt. Express 12, 6147 (2004).
    [CrossRef]
  8. C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
    [CrossRef]
  9. L. Su and C. Lu, Electron. Lett. 41, 11 (2005).
    [CrossRef]
  10. S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
    [CrossRef]
  11. S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, Appl. Opt. 46, 3579 (2007).
    [CrossRef]
  12. D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
    [CrossRef]
  13. Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, J. Lightwave Technol. 30, 3540 (2012).
    [CrossRef]
  14. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, Opt. Lett. 37, 464 (2012).
    [CrossRef]
  15. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]

2012 (2)

2010 (1)

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (2)

2005 (3)

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

L. Su and C. Lu, Electron. Lett. 41, 11 (2005).
[CrossRef]

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

2004 (2)

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

D. S. Moon, U. C. Paek, and Y. Chung, Opt. Express 12, 6147 (2004).
[CrossRef]

2003 (1)

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

2000 (1)

1994 (1)

K. H. Wanser, Proc. SPIE 2360, 265 (1994).
[CrossRef]

Chao, L.

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

Chung, Y.

Cui, Y.

Demokan, M. S.

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

Dinesh Kumar, R.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Djambova, T. V.

Dong, X.

S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, Appl. Opt. 46, 3579 (2007).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

Feng, X.

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

Fu, S.

S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, Appl. Opt. 46, 3579 (2007).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

Gu, C.

Guo, Z.

Gupta, S.

Jiang, P.

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Jianzhong, H.

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

Jin, W.

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

Lee, J.

Lei, S.

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

Li, Z.

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

Lin, Z.

Liu, Y.

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

Lu, C.

Ming, H.

Mizunami, T.

Moon, D. S.

Nampoori, V. P. N.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Niiho, T.

Paek, U. C.

Radhakrishnan, P.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Ruffin, P.

Shen, Y.

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Si, L.

Su, L.

L. Su and C. Lu, Electron. Lett. 41, 11 (2005).
[CrossRef]

Sun, B.

Suresh Kumar, P.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Thomas Lee, S.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Vallabhan, C. P. G.

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Wang, A.

Wang, Y.

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Wanser, K. H.

K. H. Wanser, Proc. SPIE 2360, 265 (1994).
[CrossRef]

Wu, B.

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Xu, L.

Yang, D.

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Yang, X.

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

Yin, S.

Yixin, W.

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

Yong, Z.

Yuan, S.

S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, Appl. Opt. 46, 3579 (2007).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

Zhan, C.

Zhan, Q.

Zhao, C.-L.

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

Zhao, Y.

Zhihong, L.

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Electron. Lett. (1)

L. Su and C. Lu, Electron. Lett. 41, 11 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (2)

C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005).
[CrossRef]

S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

K. H. Wanser, Proc. SPIE 2360, 265 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Relationship between the simulation of the grating and the measured grating’s reflection spectrum. (a) Simulation results: propagation constants of N=0 mode (blue line) and N=1 mode (red line), the average of N=0 and N=1 (green line), and the grating (black line) of π/Λ. (b) Measured reflection spectrum of the FBG.

Fig. 2.
Fig. 2.

Schematic illustration of the fiber laser design. OSS (red circle), offset splicing spot; YDF, Yb-doped fiber; OSA, optical spectrum analyzer (Ando AQ6317B).

Fig. 3.
Fig. 3.

Three different operating states of the fiber laser: the measured spectrum shows three independent oscillating wavelengths at 1051.53 nm (red), 1052.47 nm (green), and 1053.33 nm (blue); the middle and lower parts show the corresponding experimental and simulated output transverse mode profiles.

Fig. 4.
Fig. 4.

Laser output power versus pump power for the three different operating states.

Fig. 5.
Fig. 5.

Schematic diagram of the fiber laser: the second-order mode is output.

Fig. 6.
Fig. 6.

Total intensity and intensity distributions after a linear polarizer at different orientations for the four different spatially variant polarization modes: TM01, TE01, HE21even, and HE21odd modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β=2πλncore14ΔN+1V,

Metrics