Abstract

A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
    [CrossRef]
  2. S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
    [CrossRef]
  3. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, Opt. Lett. 30, 2323 (2005).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  5. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, Opt. Lett. 37, 638 (2012).
    [CrossRef]

2012

2006

T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
[CrossRef]

2005

2001

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

Baumann, E.

Bitou, Y.

Coddington, I.

Cundiff, S. T.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Giorgetta, F. R.

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
[CrossRef]

Hong, F.-L.

Inaba, H.

Matsumoto, H.

Minoshima, K.

Newbury, N. R.

Nicholson, J. W.

Onae, A.

Schibli, T. R.

Swann, W. C.

Ye, J.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Zolot, A. M.

Opt. Lett.

Rev. Mod. Phys.

T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
[CrossRef]

Rev. Sci. Instrum.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Experimental setup. ECDL, extended-cavity laser diode; AOM, acousto-optic modulator; DL, delay line; F, grating-based spectral filter; PD, photodiode; PMF, polarization maintaining fiber; DBM, double-balanced mixer; SA, spectrum analyzer; FPI, Fabry–Pérot interferometer; MZM, Mach–Zehnder modulator; PS, phase-shifter; OSC, rf-oscillator. See text for details.

Fig. 2.
Fig. 2.

Frequency-tuning scenario under locked conditions. Curve A, given time-dependent function of phase command values; curve B, resulting optical frequency of ECDL as measured by FPI; curve C, measured msa of the beat note signal at 16 MHz as measured by SA. Lower curves show repeated measurement of the gray-shaded time interval with higher temporal resolution. Here, the temporal evolution of the command value is alternatively represented in complex plane as command phasor function, where a phase ramp corresponds to a helical trajectory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν COMB = 2 π 2 Δ L | β 2 | ,

Metrics