Abstract

The quantum optical Fredkin gate is an indispensable resource for networkable quantum applications. Its performance in practical implementations, however, is limited fundamentally by the inherent quantum fluctuations of the pump waves. We demonstrate a method to overcome this drawback by exploiting stimulated Raman scattering in fiber-based implementations. Using a Sagnac fiber-loop switch as a specific example, we show that high switching contrast can be maintained even in the presence of significant pump fluctuations. This unique feature of self-stabilization, together with high-speed and low-loss performance of such devices, point to a viable technology for practical quantum communications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, Nat. Photonics 4, 3 (2010).
    [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  3. B. C. Jacobs and J. D. Franson, Phys. Rev. A 79, 063830 (2009).
    [CrossRef]
  4. Y. Huang and P. Kumar, Opt. Lett. 35, 2376 (2010).
    [CrossRef]
  5. Y.-P. Huang and P. Kumar, IEEE J. Select. Topics Quantum Electron. 18, 600 (2012).
    [CrossRef]
  6. E. Fredkin and T. Toffoli, Int. J. Theoretical Phys. 21, 219 (1982).
    [CrossRef]
  7. G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
    [CrossRef]
  8. D. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  9. K. J. Blow, N. J. Doran, B. K. Nayar, and B. P. Nelson, Opt. Lett. 15, 248 (1990).
    [CrossRef]
  10. N. Kostinski, M. P. Fok, and P. R. Prucnal, Opt. Lett. 34, 2766 (2009).
    [CrossRef]
  11. M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
    [CrossRef]
  12. A. Liebman and G. J. Milburn, Phys. Rev. A 47, 4528 (1993).
    [CrossRef]
  13. B. C. Sanders and G. J. Milburn, J. Opt. Soc. Am. B 9, 915 (1992).
    [CrossRef]
  14. M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
    [CrossRef]
  15. Y.-P. Huang and P. Kumar, New J. Phys. 14, 053038 (2012).
    [CrossRef]
  16. M. Karlsson and J. Brentel, Opt. Lett. 24, 939 (1999).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  18. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, Opt. Express 18, 6722 (2010).
    [CrossRef]
  19. S. Walker, J. Lightwave Technol. 4, 1125 (1986).
    [CrossRef]
  20. Corning SMF-28 Optical Fiber. Product Information Data sheet of Corning, Inc.
  21. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  22. A. C. Judge, S. A. Dekker, R. Pant, C. M. de Sterke, and B. J. Eggleton, Opt. Express 18, 14960 (2010).
    [CrossRef]
  23. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef]

2012 (2)

Y.-P. Huang and P. Kumar, IEEE J. Select. Topics Quantum Electron. 18, 600 (2012).
[CrossRef]

Y.-P. Huang and P. Kumar, New J. Phys. 14, 053038 (2012).
[CrossRef]

2011 (2)

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
[CrossRef]

2010 (4)

2009 (2)

B. C. Jacobs and J. D. Franson, Phys. Rev. A 79, 063830 (2009).
[CrossRef]

N. Kostinski, M. P. Fok, and P. R. Prucnal, Opt. Lett. 34, 2766 (2009).
[CrossRef]

1999 (1)

1993 (1)

A. Liebman and G. J. Milburn, Phys. Rev. A 47, 4528 (1993).
[CrossRef]

1992 (1)

1990 (1)

1989 (2)

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef]

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

1988 (1)

D. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

1986 (2)

S. Walker, J. Lightwave Technol. 4, 1125 (1986).
[CrossRef]

J. P. Gordon, Opt. Lett. 11, 662 (1986).
[CrossRef]

1982 (1)

E. Fredkin and T. Toffoli, Int. J. Theoretical Phys. 21, 219 (1982).
[CrossRef]

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

Blow, K. J.

Brentel, J.

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

de Sterke, C. M.

Dekker, S. A.

Doran, N. J.

Eggleton, B. J.

Fok, M. P.

Franson, J. D.

B. C. Jacobs and J. D. Franson, Phys. Rev. A 79, 063830 (2009).
[CrossRef]

Fredkin, E.

E. Fredkin and T. Toffoli, Int. J. Theoretical Phys. 21, 219 (1982).
[CrossRef]

Gordon, J. P.

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

Hu, J.

Huang, Y.

Huang, Y.-P.

Y.-P. Huang and P. Kumar, IEEE J. Select. Topics Quantum Electron. 18, 600 (2012).
[CrossRef]

Y.-P. Huang and P. Kumar, New J. Phys. 14, 053038 (2012).
[CrossRef]

Jacobs, B. C.

B. C. Jacobs and J. D. Franson, Phys. Rev. A 79, 063830 (2009).
[CrossRef]

Judge, A. C.

Karlsson, M.

Kostinski, N.

Kumar, P.

Y.-P. Huang and P. Kumar, IEEE J. Select. Topics Quantum Electron. 18, 600 (2012).
[CrossRef]

Y.-P. Huang and P. Kumar, New J. Phys. 14, 053038 (2012).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
[CrossRef]

Y. Huang and P. Kumar, Opt. Lett. 35, 2376 (2010).
[CrossRef]

Liebman, A.

A. Liebman and G. J. Milburn, Phys. Rev. A 47, 4528 (1993).
[CrossRef]

Menyuk, C. R.

Milburn, G. J.

A. Liebman and G. J. Milburn, Phys. Rev. A 47, 4528 (1993).
[CrossRef]

B. C. Sanders and G. J. Milburn, J. Opt. Soc. Am. B 9, 915 (1992).
[CrossRef]

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, Nat. Photonics 4, 3 (2010).
[CrossRef]

Mortimore, D.

D. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Nayar, B. K.

Nelson, B. P.

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Pant, R.

Prucnal, P. R.

Sanders, B. C.

Sanghera, J. S.

Shaw, L. B.

Toffoli, T.

E. Fredkin and T. Toffoli, Int. J. Theoretical Phys. 21, 219 (1982).
[CrossRef]

Walker, S.

S. Walker, J. Lightwave Technol. 4, 1125 (1986).
[CrossRef]

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

Y.-P. Huang and P. Kumar, IEEE J. Select. Topics Quantum Electron. 18, 600 (2012).
[CrossRef]

Int. J. Theoretical Phys. (1)

E. Fredkin and T. Toffoli, Int. J. Theoretical Phys. 21, 219 (1982).
[CrossRef]

J. Lightwave Technol. (2)

D. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

S. Walker, J. Lightwave Technol. 4, 1125 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. A. B. Miller, Nat. Photonics 4, 3 (2010).
[CrossRef]

New J. Phys. (2)

M. A. Hall, J. B. Altepeter, and P. Kumar, New J. Phys. 13, 105004 (2011).
[CrossRef]

Y.-P. Huang and P. Kumar, New J. Phys. 14, 053038 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (2)

B. C. Jacobs and J. D. Franson, Phys. Rev. A 79, 063830 (2009).
[CrossRef]

A. Liebman and G. J. Milburn, Phys. Rev. A 47, 4528 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef]

Other (3)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Corning SMF-28 Optical Fiber. Product Information Data sheet of Corning, Inc.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the fiber-loop switch based on the Kerr-nonlinear Sagnac effect.

Fig. 2.
Fig. 2.

Experimental and simulation results of switching probabilities versus pump-pulse energy for fiber lengths of (a) 100 m and (b) 500 m.

Fig. 3.
Fig. 3.

Energy span for T > 95 % with (dashed) and without (solid) the Raman effect. The legend shows the different input pump-pulse widths. Note that the energy spans without the Raman effect are almost the same for all pulse widths.

Fig. 4.
Fig. 4.

Normalized power of the pump wave in time domain for a fiber length of 100 m. The inset shows the detailed pulse shape for the soliton in the time window between 63 and 64.5 ps.

Fig. 5.
Fig. 5.

Temporal and spectral evolution during pump-pulse propagation, plotted on a log scale clipped at 40 dB relative to the maximum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z + a 2 A ( z , t ) k 2 i k + 1 k ! β k k A ( z , t ) t k = i γ ( 1 + i ω 0 t ) [ A ( z , t ) t R ( t t ) | A ( z , t ) | 2 d t ] ,

Metrics