Abstract

We design and numerically analyze a dynamically tunable, plasmonically induced transparency (PIT) planar hybrid metamaterial (MM) in a near-infrared regime, which combines the near-field coupling effect into dynamic MM. The embedded position of tunable material in dynamic MM is optimized. Thermal-tunable VO2 stripes are filled in the cut-out slots as components of a plasmonic system, which dramatically improve the dynamic modulation depth of the PIT. We also present a four-level plasmonic system to quantitatively analyze the dynamically tunable PIT device. This work may offer a further step in the design of the tunable PIT effect.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings

Yanhan Zhu, Yong Zhao, Mark Holtz, Zhaoyang Fan, and Ayrton A. Bernussi
J. Opt. Soc. Am. B 29(9) 2373-2378 (2012)

Terahertz modulator based on insulator–metal transition in photonic crystal waveguide

Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang
Appl. Opt. 51(20) 4589-4596 (2012)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription