Abstract

The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below 15dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-I. Itabashi, Opt. Express 16, 4872 (2008).
    [CrossRef]
  2. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
    [CrossRef]
  3. I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
    [CrossRef]
  4. D. Dai and J. E. Bowers, Opt. Express 19, 10940 (2011).
    [CrossRef]
  5. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, Opt. Lett. 29, 1620 (2004).
    [CrossRef]
  6. X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  7. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, Opt. Lett. 31, 3104 (2006).
    [CrossRef]
  8. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, Opt. Lett. 32, 530 (2007).
    [CrossRef]
  9. P. S. J. Russel and T. A. Birks, J. Lightwave Technol. 17, 1982 (1999).
    [CrossRef]
  10. E. Centeno and D. Cassagne, Opt. Lett. 30, 2278 (2005).
    [CrossRef]
  11. A. J. Danner, T. Tyc, and U. Leonhardt, Nat. Photonics 5, 357 (2011).
    [CrossRef]
  12. K.-V. Do, X. Le Roux, D. Marris-Morini, L. Vivien, and E. Cassan, Opt. Express 20, 4776 (2012).
    [CrossRef]
  13. J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, Opt. Lett. 36, 1074 (2011).
    [CrossRef]
  14. J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

2012 (2)

K.-V. Do, X. Le Roux, D. Marris-Morini, L. Vivien, and E. Cassan, Opt. Express 20, 4776 (2012).
[CrossRef]

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

2011 (3)

2008 (1)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, Opt. Lett. 32, 530 (2007).
[CrossRef]

2006 (2)

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, Opt. Lett. 31, 3104 (2006).
[CrossRef]

2005 (2)

I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
[CrossRef]

E. Centeno and D. Cassagne, Opt. Lett. 30, 2278 (2005).
[CrossRef]

2004 (1)

1999 (1)

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Aydinlin, A.

I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Bernier, D.

Birks, T. A.

Bowers, J. E.

Cassagne, D.

Cassan, E.

Centeno, E.

Cluzel, B.

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, Opt. Lett. 36, 1074 (2011).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
[CrossRef]

Dai, D.

Danner, A. J.

A. J. Danner, T. Tyc, and U. Leonhardt, Nat. Photonics 5, 357 (2011).
[CrossRef]

de Fornel, F.

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, Opt. Lett. 36, 1074 (2011).
[CrossRef]

De La Rue, R. M.

Dellinger, J.

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, Opt. Lett. 36, 1074 (2011).
[CrossRef]

Do, K. V.

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

Do, K.-V.

Dunbar, L. A.

Fukuda, H.

Gallet, J.-F.

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Houdré, R.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Itabashi, S.-I.

Jugessur, A.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Le Roux, X.

Le Thomas, N.

Leonhardt, U.

A. J. Danner, T. Tyc, and U. Leonhardt, Nat. Photonics 5, 357 (2011).
[CrossRef]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Lupu, A.

Marris-Morini, D.

Mazilu, M.

O’Faolain, L.

Park, W.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Russel, P. S. J.

Schonbrun, E.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Summers, C. J.

Tsuchizawa, T.

Tyc, T.

A. J. Danner, T. Tyc, and U. Leonhardt, Nat. Photonics 5, 357 (2011).
[CrossRef]

Vivien, L.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Wu, L.

Wu, Q.

Yamada, K.

Yamashita, T.

Zabelin, V.

Appl. Phys. Lett. (2)

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

J. Dellinger, K. V. Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, Appl. Phys. Lett. 101, 141108 (2012).

IEEE Photonics Technol. Lett. (1)

I. Kiyat, A. Aydinlin, and N. Dagli, IEEE Photonics Technol. Lett. 17, 100 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 157 (2007).
[CrossRef]

A. J. Danner, T. Tyc, and U. Leonhardt, Nat. Photonics 5, 357 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Supplementary Material (1)

» Media 1: MOV (1476 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

GPhC PBS operating principle. (a) and (b) TE and TM steady-state fields calculated using 2D-FDTD simulation at ω=0.25 for the considered GPhC structure characterized by a 45°-rotated square PhC lattice with r/a=0.35×exp[(x2+y2)/2R2]. (c) and (d) TE and TM EFS of the related square lattice PhC with r/a=0.3. (e) and (f) Schematic picture of the TE and TM EFS at a constant frequency within the PBS bandwidth for r/a values taken along the beam propagation.

Fig. 2.
Fig. 2.

Transmission spectra of the straight and bended channels calculated using FDTD simulation.

Fig. 3.
Fig. 3.

SEM views of the fabricated GPhC structure with detailed views of the lattice at different locations within the graded periodical dielectric medium.

Fig. 4.
Fig. 4.

(a) SNOM image obtained at λ=1550nm for a TE polarization of the input light. (b) SNOM image obtained at λ=1550nm for a TM polarization of the input light. (c)–(f) Hyp-SNOM images obtained at λ=1450, 1500, 1550, and 1600 nm with a nonpolarized laser. The beam splits into TE and TM polarized beams. Over a broadband of 150 nm, the TE-beam is bended while the TM-beam goes straight (Media 1).

Metrics