Abstract

Quantitative phase imaging has many applications for label-free studies of the nanoscale structure and dynamics of cells and tissues. It has been demonstrated that optical coherence phase microscopy (OCPM) can provide quantitative phase information with very high sensitivity. The excellent phase stability of OCPM is obtained by use of a reflection from the microscope cover glass as a local reference field. For detailed intracellular studies a large numerical aperture (N.A.) objective is needed in order to obtain the required resolution. Unfortunately, this also means that the depth of field becomes too small to obtain sufficient power from the cover glass when the beam is focused into the sample. To address this issue, we designed a setup with a dual-beam sample arm. One beam with a large diameter (filling the 1.2 N.A. water immersion objective) enabled high-resolution imaging. A second beam with a small diameter (underfilling the same objective) had a larger depth of field and could detect the cover glass used as a local phase reference. The phase stability of the setup was quantified by monitoring the front and back of a cover glass. The standard deviation of the phase difference was 0.021 rad, corresponding to an optical path displacement of 0.9 nm. The lateral and axial dimensions of the confocal point spread function were 0.42 and 0.84 μm, respectively. This makes our dual-beam setup ideal for three-dimensional intracellular phase imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-zaiat, Opt. Commun. 117, 43 (1995).
    [CrossRef]
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
    [CrossRef]
  3. N. A. Nassif, B. H. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, Opt. Express 12, 367 (2004).
    [CrossRef]
  4. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [CrossRef]
  5. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, Opt. Lett. 30, 2131 (2005).
    [CrossRef]
  6. C. Joo and J. F. de Boer, Opt. Lett. 32, 2426 (2007).
    [CrossRef]
  7. C. Joo, C. L. Evans, T. Stepinac, T. Hasan, and J. F. de Boer, Opt. Express 18, 2858 (2010).
    [CrossRef]
  8. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, Opt. Express 15, 8115 (2007).
    [CrossRef]
  9. T. Akkin, D. P. Davé, T. E. Milner, and H. G. Rylander, Opt. Express 12, 2377 (2004).
    [CrossRef]
  10. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, Appl. Opt. 42, 6953 (2003).
    [CrossRef]
  11. C. K. Hitzenberger and A. F. Fercher, Opt. Lett. 24, 622 (1999).
    [CrossRef]
  12. M. Sticker, M. Pircher, E. Götzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, Opt. Lett. 27, 1126 (2002).
    [CrossRef]
  13. S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, Opt. Express 13, 410 (2005).
    [CrossRef]
  14. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, Opt. Express 13, 3931 (2005).
    [CrossRef]
  15. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algoritms, and Software (Wiley-Interscience, 1998).
  16. C. Joo, K. H. Kim, and J. F. de Boer, Opt. Lett. 32, 623 (2007).
    [CrossRef]

2010 (1)

2007 (3)

2005 (4)

2004 (2)

2003 (1)

2002 (1)

1999 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

1994 (1)

Akkin, T.

Bouma, B. E.

Cense, B.

Cense, B. H.

Chen, T. C.

Choma, M. A.

Creazzo, T. L.

Davé, D. P.

de Boer, J. F.

Ellerbee, A. K.

El-zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Evans, C. L.

Fercher, A. F.

Fujimoto, J. G.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algoritms, and Software (Wiley-Interscience, 1998).

Götzinger, E.

Hasan, T.

Hee, M. R.

Hitzenberger, C. K.

Izatt, J. A.

Joo, C.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Kane, D. J.

Kim, K. H.

Milner, T. E.

Mujat, M.

Nassif, N. A.

Owen, G. M.

Park, B. H.

Peterson, K. A.

Pierce, M. C.

Pircher, M.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algoritms, and Software (Wiley-Interscience, 1998).

Rylander, H. G.

Sarunic, M. V.

Sattmann, H.

Stepinac, T.

Sticker, M.

Swanson, E. A.

Tearney, G. J.

Vakhtin, A. B.

Wood, W. R.

Yang, C.

Yazdanfar, S.

Yun, S. H.

Appl. Opt. (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Other (1)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algoritms, and Software (Wiley-Interscience, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical coherence microscope with a dual beam. C, collimator; ND, neutral density filter; L, lens; PC, polarization controller; P, linear polarizer; HWP, half-wave plate; M, mirror.

Fig. 2.
Fig. 2.

Schematic of the Sagnac interferometer with a telescope. PBS, polarizing beam splitter; L1, concave lens with f=25mm; L2, convex lens with f=100mm; M, mirror.

Fig. 3.
Fig. 3.

Phase stability as a function of signal-to-noise ratio. The phase was measured at the front and back of a cover glass. The dashed line shows the theoretical limit according to Eq. (2).

Fig. 4.
Fig. 4.

Images of a muntjac skin fibroblast cell. (a) The intensity image, (b) the matching phase image after two-dimensional unwrapping, (c) three-dimensional representation of the measured phase, and (d) the vertical derivative of the phase emphasizing the edges of structures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

DOF=2πω02λ,
σΔϕ=1SNR,
σOPD=σΔϕλ4πn,

Metrics