Abstract

We use numerical simulations to show that a suitably dimensioned periodic arrangement of vertical metallic metal–dielectric–metal nanocavities supports a hybrid plasmonic mode whose spatial electric field distribution is suitable for use in infrared photodetectors based on an unpatterned semiconductor thin-film absorbing layer. The partially localized nature of the hybrid mode offers reduced sensitivity to the angle of incoming light and smaller pixel sizes compared with surface plasmonic modes coupled by diffraction.

© 2013 Optical Society of America

PDF Article
OSA Recommended Articles
Engineering plasmon dispersion relations: hybrid nanoparticle chain -substrate plasmon polaritons

Paul J. Compaijen, Victor A. Malyshev, and Jasper Knoester
Opt. Express 23(3) 2280-2292 (2015)

Frequency- and polarization-selective Schottky detectors in the visible and near ultraviolet

K. Berthold, W. Beinstingl, and E. Gornik
Opt. Lett. 12(2) 69-71 (1987)

Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection

Zhiqiang Yang, Min Liu, Shuhai Liang, Wending Zhang, Ting Mei, Dawei Zhang, and Soo Jin Chua
Opt. Express 25(17) 20268-20273 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription