Abstract

An ultra-small disk resonator consisting of a suspended silicon disk with a submicron bending radius sitting on an SiO2 pedestal is demonstrated experimentally. An asymmetrical suspended rib waveguide is integrated as the access waveguide for the suspended submicron disk resonator, which is used to realize an ultra-small optical sensor with an improved sensitivity due to the enhanced evanescent field interaction with the analyte. The present optical sensor also has a large measurement range because of the ultra-large free-spectral range of the submicron-disk resonator. As an example, a suspended submicron disk sensor with a bending radius of 0.8 μm is designed, fabricated, and characterized. The concentration of NaCl aqueous solution and organic liquids is measured with the suspended submicron-disk sensor, and the measured sensitivity is about 130nm/RIU, which agrees well with the simulation value.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
    [CrossRef]
  2. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, Opt. Express 16, 15137 (2008).
    [CrossRef]
  3. Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quantum Electron. 44, 100 (2008).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef]
  5. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, Opt. Express 15, 3149 (2007).
    [CrossRef]
  6. T. Lei and A. W. Poon, Opt. Express 19, 22227 (2011).
    [CrossRef]
  7. J. Wang and D. Dai, Opt. Lett. 35, 4229 (2010).
  8. Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express 16, 4309 (2008).
    [CrossRef]
  9. K. Yao and Y. Shi, Opt. Express 20, 27039 (2012).
    [CrossRef]
  10. S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
    [CrossRef]
  11. H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
    [CrossRef]
  12. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 18, 19541 (2010).
    [CrossRef]
  13. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, Opt. Express 17, 23323 (2009).
    [CrossRef]
  14. M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
    [CrossRef]
  15. S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
    [CrossRef]
  16. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
    [CrossRef]
  17. C.-Y. Chao and L. Guo, J. Lightwave Technol. 24, 1395 (2006).
    [CrossRef]
  18. Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
    [CrossRef]
  19. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express 15, 7610 (2007).
    [CrossRef]
  20. I. M. White and X. Fan, Opt. Express 16, 1020 (2008).
    [CrossRef]
  21. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  22. C. Kim and C. Su, Meas. Sci. Technol. 15, 1683 (2004).
    [CrossRef]

2013

S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
[CrossRef]

2012

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

K. Yao and Y. Shi, Opt. Express 20, 27039 (2012).
[CrossRef]

2011

2010

2009

J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, Opt. Express 17, 23323 (2009).
[CrossRef]

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

2008

2007

2006

C.-Y. Chao and L. Guo, J. Lightwave Technol. 24, 1395 (2006).
[CrossRef]

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

2004

C. Kim and C. Su, Meas. Sci. Technol. 15, 1683 (2004).
[CrossRef]

2002

Adibi, A.

Baets, R.

Bartolozzi, I.

Beausoleil, R. G.

Bienstman, P.

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Chao, C.-Y.

Cheben, P.

Chen, T.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Chen, Y.

Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quantum Electron. 44, 100 (2008).
[CrossRef]

Dai, D.

Dalton, L. R.

De Greve, K.

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

De Vos, K.

Delâge, A.

Densmore, A.

Elston, S.

Fan, X.

Fattal, D.

Fernandes, G.

Guo, L.

He, S.

Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Janz, S.

Jeon, S.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Jiang, L.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Kim, C.

C. Kim and C. Su, Meas. Sci. Technol. 15, 1683 (2004).
[CrossRef]

Koseki, S.

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lee, H.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lei, T.

Li, Q.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Liu, Z.

Lopinski, G.

McKinnon, R.

Mirsadeghi, S. H.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
[CrossRef]

Mischki, T.

Painter, O.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Poon, A. W.

Post, E.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Rabiei, P.

Schacht, E.

Schelew, E.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
[CrossRef]

Schmid, J. H.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Shainline, J.

Shi, Y.

Soltani, M.

Soref, R.

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

Steier, W. H.

Su, C.

C. Kim and C. Su, Meas. Sci. Technol. 15, 1683 (2004).
[CrossRef]

Tang, Y.

Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
[CrossRef]

Vahala, K. J.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Waldron, P.

Wang, J.

Wang, Z.

Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
[CrossRef]

White, I. M.

Wosinski, L.

Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
[CrossRef]

Xia, Z.

Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quantum Electron. 44, 100 (2008).
[CrossRef]

Xu, D. X.

Xu, D.-X.

Xu, J.

Xu, Q.

Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express 16, 4309 (2008).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yamamoto, Y.

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Yang, K. Y.

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Yao, K.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yegnanarayanan, S.

Young, J. F.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
[CrossRef]

Zhang, B.

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Zhang, C.

Zhou, Z.

Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quantum Electron. 44, 100 (2008).
[CrossRef]

Zia, R.

Appl. Phys. Lett.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, Appl. Phys. Lett. 102, 131115 (2013).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

IEEE J. Quantum Electron.

Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quantum Electron. 44, 100 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Wang, Y. Tang, L. Wosinski, and S. He, IEEE Photon. Technol. Lett. 22, 1568 (2010).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

C. Kim and C. Su, Meas. Sci. Technol. 15, 1683 (2004).
[CrossRef]

Nat. Photonics

H. Lee, T. Chen, L. Jiang, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Present suspended silicon submicron-disk resonator with a suspended access waveguide.

Fig. 2.
Fig. 2.

Calculated bending losses of the TE0, TM0, TE1, and TM1 modes in a submicron-disk resonator when the cladding is air (thick curves) or DI water (thin curves). (a) Suspended. (b) Unsuspended.

Fig. 3.
Fig. 3.

Profile for the TM0 mode in a submicron disk when R=0.8μm. (a) Unsuspended. (b) Suspended.

Fig. 4.
Fig. 4.

SEM pictures of the suspended submicron-disk (R=0.8um). (a) Tilt view. (b) Top view.

Fig. 5.
Fig. 5.

Measured transmission spectrums of the suspended submicron-disk resonator covered by NaCl solution with different concentrations (0%25%). Inset: the resonant wavelength shifts as the concentration varies.

Fig. 6.
Fig. 6.

Measured transmission spectrums of the suspended submicron-disk sensor covered with different organic liquids. Inset: the resonant wavelength shifts as the refractive index of organic liquid varies.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Qi=2πng/(αλ0)=ng/(2nim),
S=λcnc=λcneffneffncSdSw,

Metrics