Abstract

We propose a novel structure that can achieve extraordinary optical absorption over the visible spectrum, based on the guided-mode resonance effect. An optical metal grating with moderate thickness and high filling factor can lead to coupling between the quasi-guided-mode and cavity mode. The resonant interaction between the two modes can influence the field distribution, such as the magnetic field near the grating, which results in extraordinary absorption. Absorption efficiency can be optimized up to 99.16%. We also show that the absorption peak can be readily tuned just by varying the subwavelength grating period.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  2. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
    [CrossRef]
  3. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
    [CrossRef]
  4. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
    [CrossRef]
  5. P. Zhu and L. J. Guo, Appl. Phys. Lett. 101, 241116 (2012).
    [CrossRef]
  6. J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
    [CrossRef]
  7. L. Meng, D. Zhao, Q. Li, and M. Qiu, Opt. Express 21, A111 (2013).
    [CrossRef]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
    [CrossRef]
  9. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
    [CrossRef]
  10. B. Zhang, J. Hendrickson, and J. Guo, J. Opt. Soc. Am. B 30, 656 (2013).
    [CrossRef]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  12. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
    [CrossRef]
  13. M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  14. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, Opt. Express 20, 28017 (2012).
    [CrossRef]
  15. J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
    [CrossRef]
  16. A. Roszkiewicz and W. Nasalski, Opt. Lett. 37, 3759 (2012).
    [CrossRef]
  17. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).
    [CrossRef]
  18. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J. L. Pelouard, and R. Haidar, Opt. Lett. 36, 3054 (2011).
    [CrossRef]
  19. A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
    [CrossRef]
  20. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
    [CrossRef]
  21. D. Dai and S. He, Opt. Express 17, 16646 (2009).
    [CrossRef]
  22. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
    [CrossRef]
  23. Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
    [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  25. S. Peng and G. M. Morris, J. Opt. Soc. Am. A 12, 1087 (1995).
    [CrossRef]
  26. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  27. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
    [CrossRef]
  28. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  29. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
    [CrossRef]
  30. R. Gordon, Phys. Rev. B 73, 153405 (2006).
    [CrossRef]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

2013 (3)

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

L. Meng, D. Zhao, Q. Li, and M. Qiu, Opt. Express 21, A111 (2013).
[CrossRef]

B. Zhang, J. Hendrickson, and J. Guo, J. Opt. Soc. Am. B 30, 656 (2013).
[CrossRef]

2012 (6)

A. Roszkiewicz and W. Nasalski, Opt. Lett. 37, 3759 (2012).
[CrossRef]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, Opt. Express 20, 28017 (2012).
[CrossRef]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[CrossRef]

P. Zhu and L. J. Guo, Appl. Phys. Lett. 101, 241116 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

2011 (4)

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
[CrossRef]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J. L. Pelouard, and R. Haidar, Opt. Lett. 36, 3054 (2011).
[CrossRef]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

2009 (6)

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

2006 (3)

R. Gordon, Phys. Rev. B 73, 153405 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

1998 (2)

1995 (1)

1986 (1)

Alaee, R.

Atwater, H. A.

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Bardou, N.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Barnard, E. S.

Bian, Y.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Chandran, A.

Collin, S.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Dai, D.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Djurisic, A. B.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Elazar, J. M.

Fan, S.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Farhat, M.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[CrossRef]

Gaylord, T. K.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Ghenuche, P.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Gordon, R.

R. Gordon, Phys. Rev. B 73, 153405 (2006).
[CrossRef]

Guo, J.

Guo, L. J.

P. Zhu and L. J. Guo, Appl. Phys. Lett. 101, 241116 (2012).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
[CrossRef]

Haidar, R.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
[CrossRef]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
[CrossRef]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Lederer, F.

Li, Q.

Liu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Liu, L.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Liu, Z. S.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Magnusson, R.

Majewski, M. L.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Munday, J. N.

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

Nasalski, W.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Pardo, F.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Pelouard, J. L.

Peng, S.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

Qiu, M.

L. Meng, D. Zhao, Q. Li, and M. Qiu, Opt. Express 21, A111 (2013).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
[CrossRef]

Rakic, A. D.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Rockstuhl, C.

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Roszkiewicz, A.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Sakat, E.

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[CrossRef]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Shin, D.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Su, Y.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

Tibuleac, S.

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Veronis, G.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

Vincent, G.

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

White, J. S.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
[CrossRef]

Young, P. P.

Yu, Z.

Zhang, B.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Zhao, D.

Zhao, X.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

Zheng, Z.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
[CrossRef]

Zhou, T.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

Zhu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Opt. Express 17, 21320 (2009).
[CrossRef]

Zhu, P.

P. Zhu and L. J. Guo, Appl. Phys. Lett. 101, 241116 (2012).
[CrossRef]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. Zhu and L. J. Guo, Appl. Phys. Lett. 101, 241116 (2012).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, Appl. Phys. Lett. 99, 143111 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, and T. Zhou, IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[CrossRef]

Nano Lett. (4)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
[CrossRef]

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
[CrossRef]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (4)

J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
[CrossRef]

R. Gordon, Phys. Rev. B 73, 153405 (2006).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Other (1)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1995), pp. 394–444.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed two-dimensional metal subwavelength grating. (b) Front view showing the structural parameters and the relevant scattering and coupling coefficients. (c) Absorption spectra with and without the waveguide (WG) structure.

Fig. 2.
Fig. 2.

(a) and (b) Transmission and absorption spectra, respectively, plotted as a function of incident wavelength and grating thickness (hm), period Λ=0.35μm, and filling factor f=0.9. The elliptical circle denotes the anticrossing coupling. Calculated QGM and the CM are marked with a dashed line and dash–dot line, respectively. Under the green (small) dot, the grating cannot support CM. (c) Transmission spectra with grating thickness ranging from 0.09 to 0.2 μm (down to top), in steps of 0.01 μm. The black arrow indicates the CM. On the right side of the picture, the green and red arrows show the grating thicknesses 0.09 and 0.18 μm, respectively.

Fig. 3.
Fig. 3.

(a) and (b) Magnetic field component Hy for the grating thickness hm=0.18μm, denoted by the green arrow, as shown in Fig. 2(c). (a) SPP mode (λ=0.543μm), (b) CM (λ=0.686μm), and (c) The magnetic field for the grating thickness hm=0.09μm at the anticrossing coupling point (λ=0.567μm). The solid lines in these figures show the grating configuration. Metal grating, cladding layer, waveguide layer, and substrate are depicted from bottom to top, respectively.

Fig. 4.
Fig. 4.

Absorption spectrum dependence on the grating period with constant 0.10 μm grating thickness.

Fig. 5.
Fig. 5.

(a) Absorption spectrum dependence on the incident frequency and the in-plane wave vector. (b) and (c) The amplitude and the phase distribution at point A, respectively. In (a), the white arrows denote the SPP mode and the QGM mode, which can cause the absorption. The red dash indicates the interface between the metal grating and the cladding layer.

Fig. 6.
Fig. 6.

Absorption spectrum plotted as a function of the filling factor (hm=0.10μm, period=0.35μm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ12+ϕ23+kMIMhm=2mπ,

Metrics