Abstract

We present a direct and nondestructive measurement of the propagation loss of higher-order modes (HOMs) in effectively single-mode fibers. Lossy HOMs are excited by applying local stress at various points alongside a straight single mode fiber. The change of the HOM power as a function of the propagation distance is recorded at the fiber end by performing a modal decomposition with a correlation filter. The results for the HOM propagation loss are compared to simulations yielding very good agreement.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, and J. Limpert, Appl. Opt. 49, F71 (2010).
    [CrossRef]
  2. F. Dubois, P. Emplit, and O. Hugon, Opt. Lett. 19, 433 (1994).
    [CrossRef]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, Opt. Lett. 25, 442 (2000).
    [CrossRef]
  4. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, Opt. Express 21, 3170 (2013).
    [CrossRef]
  5. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, Opt. Lett. 34, 2369 (2009).
    [CrossRef]
  6. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, Opt. Express 19, 12434 (2011).
    [CrossRef]
  7. A. E. Siegman, J. Opt. Soc. Am. B 24, 1677 (2007).
    [CrossRef]
  8. F. Jansen, F. Stutzki, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 510 (2013).
    [CrossRef]
  9. W. Wong, X. Peng, J. McLaughlin, and L. Dong, Opt. Lett. 30, 2855 (2005).
    [CrossRef]
  10. C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.
  11. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 12081 (2011).
    [CrossRef]
  12. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 33, 908 (2008).
    [CrossRef]
  13. A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
    [CrossRef]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).
  15. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, Opt. Lett. 34, 2876 (2009).
    [CrossRef]
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  17. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, Opt. Lett. 37, 2478 (2012).
    [CrossRef]
  18. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, Opt. Express 17, 9347 (2009).
    [CrossRef]
  19. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, J. Opt. Soc. Am. A 24, 3500 (2007).
    [CrossRef]
  20. W.-H. Lee, Appl. Opt. 18, 3661 (1979).
    [CrossRef]

2013

2012

2011

2010

2009

2008

2007

2005

2000

1994

1979

Abdou-Ahmed, M.

Arrizón, V.

Bartelt, H.

Brambilla, G.

Carrada, R.

Casagrande, F.

A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
[CrossRef]

Chan, J. S. P.

Chang, G.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Clarkson, W. A.

D’Alessandro, M.

A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
[CrossRef]

Daniel, J. M. O.

Dong, L.

Dubois, F.

Duparré, M.

Emplit, P.

Flamm, D.

Forbes, A.

Galvanauskas, A.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Goldberg, L.

González, L. A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Graf, T.

Grassi, A.

A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
[CrossRef]

Guertin, D.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Hartung, A.

Hugon, O.

Ibsen, M.

Jacobson, N.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Jansen, F.

Jauregui, C.

Jeong, Y.

Jung, Y.

Kaiser, T.

Kim, J. W.

Kliner, D. A. V.

Koplow, J. P.

Lee, W.-H.

Li, H.

Li, L.

Limpert, J.

Litchinister, N.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Liu, C.-H.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Lorenz, A.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).

Marinoni, S.

A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
[CrossRef]

McLaughlin, J.

Moloney, J. V.

Naidoo, D.

Otto, H.-J.

Peng, X.

Peyghambarian, N.

Richardson, D. J.

Ruiz, U.

Sahu, J. K.

Schreiber, T.

Schröter, S.

Schulze, C.

Schülzgen, A.

Siegman, A. E.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).

Stutzki, F.

Suzuki, S.

Tankala, K.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

Temyanko, V. L.

Tünnermann, A.

Vogel, M. M.

Voss, A.

Wang, Q.

Wong, W.

Zhu, X.

Appl. Opt.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

A. Grassi, F. Casagrande, M. D’Alessandro, and S. Marinoni, Opt. Commun. 273, 127 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuBB3.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of the match filter principle. CF(Ψl*), correlation filter displaying the conjugate complex of the signal Ψl; L(f), lens of focal length f; D, detection plane; and Il, correlation intensity signal.

Fig. 2.
Fig. 2.

Schematic experimental setup. LS, laser source; MO, microscope objectives; L, lenses; BS, beam splitter; CF, correlation filter; CCD1,2 cameras. Dashed section depicts the side view of the fiber holder consisting of a 50 cm long straight groove, on which the local pressure is applied with a magnet.

Fig. 3.
Fig. 3.

Fiber cross section in white light illumination (a) and simulated modes relevant at 1064 nm wavelength (b)–(d), which are denoted in the LP system due to their similarity to step-index fiber modes.

Fig. 4.
Fig. 4.

Fundamental mode power ρ012 in absolute (mW) and normalized (%) units as a function of transverse misalignment Δx. Insets depict the near field intensities at the positions marked with red circles.

Fig. 5.
Fig. 5.

Measured relative mode content of LP01 (1), LP11e (2), and LP11o (3) mode, with corresponding near field intensities without applied stress (a), (e) and when stress is applied at three different positions z measured from the fiber end facet: z=1cm (b), (f), z=22cm (c), (g), z=45cm (d), (h). Blue circles mark the central fiber core.

Fig. 6.
Fig. 6.

Measured (me) decay of HOM power ρ11o2 with increasing propagation distance z. An exponential fit yields a propagation loss of αdB=(19±2)dB/m. Red circles mark the positions given in Fig. 5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(r)=Ψl*(r),
T(r)=lΨl*(r)exp(iKl·r).
αdB=20ln(10)2πλI(neff),

Metrics