Abstract

By broadening the stripe width of the active waveguide region, it is possible to extract high optical powers from semiconductor broad area lasers. However, a weak output beam quality, optical filamentation, and high peak power densities will result, which are invoked by the amplification of higher order modes. We show an approach to influence the optical field inside the resonator by integrating optical phase structures directly into the waveguide. Those elements offer the possibility to enlarge the active gain area for the desired fundamental laser mode, while additional diffraction losses for higher order modes are generated, thus achieving an improved beam quality. We report on considerations in designing those elements and demonstrate a first experimental realization.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
    [CrossRef]
  3. U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
    [CrossRef]
  4. A. Büttner, R. Kowarschik, and U. D. Zeitner, Appl. Phys. B 81, 601 (2005).
    [CrossRef]
  5. J. G. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  6. M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
    [CrossRef]
  7. A. Fox and T. Li, Proc. IEEE 51, 80 (1963).
    [CrossRef]
  8. H.-C. Eckstein and U. D. Zeitner, Opt. Express 17, 17384 (2009).
    [CrossRef]
  9. B. D. Guenther, D. G. Steel, and L. Bayvel, “Diffractive laser resonators,” in Encyclopedia of Modern Optics (Elsevier, 2005).
  10. H.-C. Eckstein and U. D. Zeitner, Opt. Express 21, 23231 (2013).
    [CrossRef]

2013 (1)

2009 (1)

2005 (1)

A. Büttner, R. Kowarschik, and U. D. Zeitner, Appl. Phys. B 81, 601 (2005).
[CrossRef]

2000 (1)

U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
[CrossRef]

1994 (1)

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
[CrossRef]

1988 (1)

1963 (1)

A. Fox and T. Li, Proc. IEEE 51, 80 (1963).
[CrossRef]

Bayvel, L.

B. D. Guenther, D. G. Steel, and L. Bayvel, “Diffractive laser resonators,” in Encyclopedia of Modern Optics (Elsevier, 2005).

Büttner, A.

A. Büttner, R. Kowarschik, and U. D. Zeitner, Appl. Phys. B 81, 601 (2005).
[CrossRef]

Chen, D.

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
[CrossRef]

Eckstein, H.-C.

Feit, M. D.

Fleck, J. A.

Fox, A.

A. Fox and T. Li, Proc. IEEE 51, 80 (1963).
[CrossRef]

Goodman, J. G.

J. G. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Guenther, B. D.

B. D. Guenther, D. G. Steel, and L. Bayvel, “Diffractive laser resonators,” in Encyclopedia of Modern Optics (Elsevier, 2005).

Kowarschik, R.

A. Büttner, R. Kowarschik, and U. D. Zeitner, Appl. Phys. B 81, 601 (2005).
[CrossRef]

Leger, J. R.

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
[CrossRef]

Li, T.

A. Fox and T. Li, Proc. IEEE 51, 80 (1963).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Steel, D. G.

B. D. Guenther, D. G. Steel, and L. Bayvel, “Diffractive laser resonators,” in Encyclopedia of Modern Optics (Elsevier, 2005).

Wang, Z.

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
[CrossRef]

Wyrowski, F.

U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
[CrossRef]

Zeitner, U.

U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
[CrossRef]

Zeitner, U. D.

Zellmer, H.

U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
[CrossRef]

Appl. Phys. B (1)

A. Büttner, R. Kowarschik, and U. D. Zeitner, Appl. Phys. B 81, 601 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

U. Zeitner, F. Wyrowski, and H. Zellmer, IEEE J. Quantum Electron. 36, 1105 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett (1)

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett 19, 108 (1994).
[CrossRef]

Proc. IEEE (1)

A. Fox and T. Li, Proc. IEEE 51, 80 (1963).
[CrossRef]

Other (3)

B. D. Guenther, D. G. Steel, and L. Bayvel, “Diffractive laser resonators,” in Encyclopedia of Modern Optics (Elsevier, 2005).

A. E. Siegman, Lasers (University Science Books, 1986).

J. G. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Waveguide layer structure (simplified) and effective index of the mode in regions of different waveguide layer compositions: (1) electrical contact layer, (2) cladding layer, (3) waveguide layers, (4) active layer, (5) substrate, and (6) passivation layer.

Fig. 2.
Fig. 2.

Resonator internal Gaussian to flat-top beam shaper using phase structures (structures not true to scale).

Fig. 3.
Fig. 3.

Ratio between the diffraction loss of the zero order mode and the losses of the ith-higher order mode.

Fig. 4.
Fig. 4.

Near field intensity distribution of structured and unstructured lasers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U(x,y0+Δy)=O^ΔyU(x,y0)=P^Δyϕ^A^U(x,y0).
Z^U(x,y)=O^ΔynO^Δy1O^Δy0U(x,y0)
Z^Ui(x,y)=λi·Ui(x,y).
U(x,ystructure)=U*(x,ystructure+),
U*(x,ystructure+)=P^structureP^structureU(x,ystructure).
P^structure=ϕ(x)=arg(U(x,ystructure)).
Δy(x)=ϕ(x)2π·λ0netchednnormal.

Metrics