Abstract

Whispering gallery mode optical resonant cavities fabricated from rare-earth-doped silica glasses have demonstrated lasing from the visible through the near-IR. However, achieving lasing in the blue has been elusive. In this Letter, thulium-doped silica films are synthesized and used to fabricate toroidal optical microcavities with quality factors in excess of 10 million. Despite the high phonon energy of silica, the high circulating optical intensities present in the microcavities enable upconversion of the thulium, resulting in emission in the blue and near-IR with microwatt threshold powers that scale linearly with the concentration of the thulium.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chistiakova and A. M. Armani, Opt. Lett. 37, 4068 (2012).
    [CrossRef]
  2. I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166 (2007).
    [CrossRef]
  3. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, Opt. Express 14, 1094 (2006).
    [CrossRef]
  4. H.-S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
    [CrossRef]
  5. L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
    [CrossRef]
  6. R. Scheps, Prog. Quantum Electron. 20, 271 (1996).
    [CrossRef]
  7. L. Johnson and H. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
    [CrossRef]
  8. J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
    [CrossRef]
  9. D. C. Nguyen, G. E. Faulkner, and M. Dulick, Appl. Opt. 28, 3553 (1989).
    [CrossRef]
  10. T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
    [CrossRef]
  11. B. Scott, F. Zhao, R. Chang, and N. Djeu, Opt. Lett. 18, 113 (1993).
    [CrossRef]
  12. S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
    [CrossRef]
  13. S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
    [CrossRef]
  14. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef]
  15. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  16. O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010), p. 620.
  17. L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
    [CrossRef]
  18. Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
    [CrossRef]

2012 (1)

2011 (1)

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

2010 (1)

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

2009 (2)

H.-S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
[CrossRef]

Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
[CrossRef]

2007 (1)

2006 (1)

2003 (2)

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

1996 (2)

1995 (1)

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

1993 (1)

1992 (2)

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

1989 (1)

1971 (1)

L. Johnson and H. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
[CrossRef]

Armani, A. M.

M. Chistiakova and A. M. Armani, Opt. Lett. 37, 4068 (2012).
[CrossRef]

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

H.-S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
[CrossRef]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Bennett, K.

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Borselli, M.

Cai, C.

Cannon, R.

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Chang, R.

Chistiakova, M.

Choi, H. S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Dayani, Y.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

del-Castillo, J.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Djeu, N.

Dulick, M.

Faulkner, G. E.

Freeman, L. M.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Gorodetsky, M. L.

Grubb, S.

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Grudinin, I. S.

Guggenheim, H.

L. Johnson and H. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
[CrossRef]

Hebert, T.

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

Hsu, H.-S.

Humer, W.

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Ilchenko, V. S.

Johnson, L.

L. Johnson and H. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Krishna, S.

Lenth, W.

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

Li, S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Liu, Y.

Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
[CrossRef]

Macfarlane, R.

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

Maleki, L.

Malmstadt, N.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Mehuys, D. G.

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

Mendez-Ramos, J.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Moshchalkov, V. V.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Nguyen, D. C.

Painter, O.

Rodriguez, V. D.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Sanders, S.

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

Savchenkov, A. A.

Scheps, R.

R. Scheps, Prog. Quantum Electron. 20, 271 (1996).
[CrossRef]

Scott, B.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Srinivasan, K.

Stintz, A.

Svelto, O.

O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010), p. 620.

Tikhomirov, V. K.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Vahala, K. J.

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Waarts, R.

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

Wannemacher, R.

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

Welch, D.

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

Xu, C.

Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
[CrossRef]

Yanes, A. C.

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Yang, L.

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

Yang, Q.

Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
[CrossRef]

Zhao, F.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

T. Hebert, R. Wannemacher, R. Macfarlane, and W. Lenth, Appl. Phys. Lett. 60, 2592 (1992).
[CrossRef]

S. Sanders, R. Waarts, D. G. Mehuys, and D. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

L. Johnson and H. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
[CrossRef]

Electron. Lett. (1)

S. Grubb, K. Bennett, R. Cannon, and W. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. Liu, C. Xu, and Q. Yang, J. Appl. Phys. 105, 084701 (2009).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol. 53, 509 (2010).
[CrossRef]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Prog. Quantum Electron. (1)

R. Scheps, Prog. Quantum Electron. 20, 271 (1996).
[CrossRef]

Other (1)

O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010), p. 620.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical toroidal microcavity. (a) Rendering of a toroidal microcavity. (b) Scanning electron micrograph (SEM) image of a toroidal microcavity.

Fig. 2.
Fig. 2.

Device characterization. (a) Rendering of the testing setup with key components indicated. (b) Dependence of the cavity quality factor on the Tm concentration (atomic %). As expected, in devices where the Q is material limited, the Q is inversely proportional to the Tm concentration. Inset: representative transmission spectra for quality factor measurement and Lorentzian fit (dashed red line).

Fig. 3.
Fig. 3.

Top view optical image of the blue toroidal laser coupled to a tapered optical fiber shown (a) off resonance and (b), (c) on resonance. When the device is off resonance, no blue lasing occurs, whereas emission is clearly located at the periphery of the device when it is on resonance. (d) Energy level diagram of Tm3+ when excited at 1064 nm indicating the decay pathways responsible for the observed emission wavelengths.

Fig. 4.
Fig. 4.

Lasing emission spectra. (a) Multimode blue lasing spectra. The inset shows the lasing threshold measurement of 32 μW for the 0.043 atomic % Tm doping. (b) Lorentzian fit to each lasing mode; reveals a constant distance of 1.1 nm between them that agrees with the calculated free-spectral range of 450 and 461 nm whispering gallery modes (c) Multimode 784, 802, and 816 nm lasing spectra. The inset shows the lasing threshold measurement of 17 μW for the 0.043 atomic % Tm doping. (d) Lorentzian fit to each lasing mode; reveals a constant distance of 2.7 nm between them that agrees with the calculated free-spectral range of whispering gallery modes.

Fig. 5.
Fig. 5.

Dependence of lasing threshold on the Tm concentration (atomic %) at (a) 450 nm and (b) 780 nm emission wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Icirc=Pin(λ2πn)(QVm),

Metrics