Abstract

A scheme for photonic generation of pulsed microwave signals with tunable frequency and phase based on optical spectral-shaping and frequency-to-time mapping is proposed and experimentally demonstrated. The spectral shaping is realized by a tunable optical comb filter consisting of a differential group delay (DGD) element, a polarization modulator (PolM), and a polarizer. By passing a short optical pulse through the tunable comb filter and a dispersive element (DE), a pulsed microwave signal is generated after optical-to-electrical conversion. The phase of the generated microwave signal can be continuously tuned by tuning the voltage applied to the PolM. The frequency of the microwave signal can be tuned by changing the DGD and/or the dispersion of the DE. An experiment is performed. The generation of a pulsed microwave signal with tunable frequency and phase is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
    [CrossRef]
  4. J. P. Yao, Opt. Commun. 284, 3723 (2011).
    [CrossRef]
  5. E. H. Bernhardi, M. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Worhoff, R. M. de Ridder, and M. Pollnau, Opt. Lett. 37, 181 (2012).
    [CrossRef]
  6. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  7. H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
    [CrossRef]
  8. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and X. S. Yao, Opt. Lett. 35, 2606 (2010).
    [CrossRef]
  9. H. Y. Jiang, L. S. Yan, Y. F. Sun, J. Ye, W. Pan, B. Luo, and X. H. Zou, Opt. Express 21, 6488 (2013).
    [CrossRef]
  10. S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
    [CrossRef]
  11. M. A. Muriel, J. Azana, and A. Carballar, Opt. Lett. 24, 1 (1999).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

2010 (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and X. S. Yao, Opt. Lett. 35, 2606 (2010).
[CrossRef]

2009 (2)

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

2007 (2)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

1999 (1)

Azana, J.

Bernhardi, E. H.

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Carballar, A.

Chi, H.

H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

de Ridder, R. M.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jiang, H. Y.

Khan, M.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Leaird, D.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Luo, B.

Muriel, M. A.

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Pan, S. L.

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

Pan, W.

Pollnau, M.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Roeloffzen, C. G. H.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Sun, Y. F.

van Wolferen, H. A. G. M.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Worhoff, K.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Yan, L.

Yan, L. S.

Yao, J. P.

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
[CrossRef]

Yao, X. S.

Ye, J.

Yi, A.

Zeng, F.

H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Zou, X.

Zou, X. H.

IEEE Photon. Technol. Lett. (3)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

H. Chi, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 668 (2007).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Opt. Commun. (1)

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed microwave signal generator. MLL, mode-locked laser; PolM, polarization modulator; DGDE, DGD element; DE, dispersion element; PC, polarization controller; Pol, polarizer; PD, photodetector; OSC, oscilloscope; ESA, electrical spectrum analyzer; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Measured optical spectra (a) before the optical comb filter and (b) after the optical comb filter.

Fig. 3.
Fig. 3.

Measured waveform and spectrum of the generated microwave signal when the lengths of the PMF and the SMF are 6.5 m and 5.25 km: (a) waveform without phase shift, (b) waveform with a 90° phase shift, (c) waveform with a 180° phase shift, (d) waveform with a 270° phase shift, and (e) electrical spectrum of the microwave signal.

Fig. 4.
Fig. 4.

(a) Waveforms of the 10Mb/s binary phase modulated pulse train and the control signal and (b) measured waveforms with a 180° phase difference.

Fig. 5.
Fig. 5.

Waveform and electrical spectrum of the generated microwave signal pulse. (a),(b) when PMF=6.5m and SMF=10.2km; (c),(d) when PMF=12.4m and SMF=10.2km.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ExEy]=22[exp[jω(t+Δτ)]exp[j(ωtΔφ)]].
Eout=22(Ex+Ey)=12exp(jωt)[exp(jωΔτ)+exp(jΔφ)].
T=Eout·Eout*E·E*=12[1+cos(ωΔτ+Δφ)].
fRF=1ΔλD=cΔτnλ2D,

Metrics