Abstract

Sensitivity, dynamic range and detection efficiency are among the key figures of merit for 1550 nm wavelength detectors that find applications in communications, sensing, and imaging. Some fundamental material and device limits have added tremendous difficulties for a single device to achieve high sensitivity and dynamic range without significant trade-offs. We present a concept that can potentially overcome this performance bottleneck. Preliminary results have shown a sensitivity of 10 photons (six photons from the quantum limit) and a large dynamic range (in the sense that output increases monotonically with input). The concept opens up a new avenue for detecting single photons in non-Geiger-mode with near 100% detection efficiency.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection

Ning Duan, Tsung-Yang Liow, Andy Eu-Jin Lim, Liang Ding, and G. Q. Lo
Opt. Express 20(10) 11031-11036 (2012)

Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors

A. Lacaita, F. Zappa, S. Cova, and P. Lovati
Appl. Opt. 35(16) 2986-2996 (1996)

Self-quenching InGaAs/InP single photon avalanche detector utilizing zinc diffusion rings

James Cheng, Sifang You, Samia Rahman, and Yu-Hwa Lo
Opt. Express 19(16) 15149-15154 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription