Abstract

Holographic optical tweezers were used to show the interaction between a strongly focused laser beam and magnetic nanoparticles in ferrofluid. When the light intensity was high enough, magnetic nanoparticles were removed from the beam center and formed a dark ring. The same behavior was observed when focusing vortex or Bessel beams. The interactions between two or more separated rings of magnetic nanoparticles created by independent optical traps were also observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Philip and J. M. Laskar, J. Nanofluids 1, 3 (2012).
    [CrossRef]
  2. K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
    [CrossRef]
  3. D. Brousseau, E. F. Borra, H. Jean-Ruel, J. Parent, and A. Ritcey, Opt. Express 14, 11486 (2006).
    [CrossRef]
  4. D. Soga, S. Alves, A. Campos, F. A. Tourinho, J. Depeyort, and A. M. Neto, J. Opt. Soc. Am. B 24, 49 (2007).
    [CrossRef]
  5. J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
    [CrossRef]
  6. B. Hoffmann and W. Köhler, J. Magn. Magn. Mater. 262, 289 (2003).
    [CrossRef]
  7. R. R. Kellner and W. Köhler, J. Appl. Phys. 97, 034910, (2005).
    [CrossRef]
  8. Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
    [CrossRef]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  10. D. G. Grier, Nature 424, 21 (2003).
    [CrossRef]
  11. A. Jonas and P. Zemanek, Electrophoresis 29, 4813 (2008).
    [CrossRef]
  12. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
    [CrossRef]
  13. T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
    [CrossRef]
  14. M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
    [CrossRef]
  15. K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
    [CrossRef]
  16. J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
    [CrossRef]

2012

J. Philip and J. M. Laskar, J. Nanofluids 1, 3 (2012).
[CrossRef]

T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
[CrossRef]

2009

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
[CrossRef]

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

2008

A. Jonas and P. Zemanek, Electrophoresis 29, 4813 (2008).
[CrossRef]

2007

2006

2005

R. R. Kellner and W. Köhler, J. Appl. Phys. 97, 034910, (2005).
[CrossRef]

2003

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

B. Hoffmann and W. Köhler, J. Magn. Magn. Mater. 262, 289 (2003).
[CrossRef]

2002

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

2001

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

1996

1995

K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
[CrossRef]

1986

Alves, S.

Arlt, J.

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Ashkin, A.

Bjorkholm, J. E.

Borra, E. F.

Brousseau, D.

Campos, A.

Casciari, R.

K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
[CrossRef]

Chu, S.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Dai, Q.-F.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Deng, H.-D.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Dennis, M. R.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Depeyort, J.

Dholakia, K.

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Dziedzic, J. M.

Gahagan, K. T.

Garcez-Chavez, V.

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Gopal, A. V.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Hoffmann, B.

B. Hoffmann and W. Köhler, J. Magn. Magn. Mater. 262, 289 (2003).
[CrossRef]

Jean-Ruel, H.

Jonas, A.

A. Jonas and P. Zemanek, Electrophoresis 29, 4813 (2008).
[CrossRef]

Kellner, R. R.

R. R. Kellner and W. Köhler, J. Appl. Phys. 97, 034910, (2005).
[CrossRef]

Köhler, W.

R. R. Kellner and W. Köhler, J. Appl. Phys. 97, 034910, (2005).
[CrossRef]

B. Hoffmann and W. Köhler, J. Magn. Magn. Mater. 262, 289 (2003).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Lan, S.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Laskar, J. M.

J. Philip and J. M. Laskar, J. Nanofluids 1, 3 (2012).
[CrossRef]

J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
[CrossRef]

Liu, H.-Y.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Masuhara, H.

T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
[CrossRef]

Meng, Z.-M.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Moskowitz, B.

K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
[CrossRef]

Neto, A. M.

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Parent, J.

Philip, J.

J. Philip and J. M. Laskar, J. Nanofluids 1, 3 (2012).
[CrossRef]

J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
[CrossRef]

Raj, B.

J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
[CrossRef]

Raj, K.

K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
[CrossRef]

Ritcey, A.

Sibbett, W.

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Soga, D.

Sugiyama, T.

T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
[CrossRef]

Swartzlander, G. A.

Tourinho, F. A.

Wu, L.-J.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Yuyama, K.

T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
[CrossRef]

Zemanek, P.

A. Jonas and P. Zemanek, Electrophoresis 29, 4813 (2008).
[CrossRef]

Zhang, W.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Zhao, W.-R.

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

Acc. Chem. Res.

T. Sugiyama, K. Yuyama, and H. Masuhara, Acc. Chem. Res. 45, 1946, (2012).
[CrossRef]

Electrophoresis

A. Jonas and P. Zemanek, Electrophoresis 29, 4813 (2008).
[CrossRef]

J. Appl. Phys.

R. R. Kellner and W. Köhler, J. Appl. Phys. 97, 034910, (2005).
[CrossRef]

Z.-M. Meng, H.-Y. Liu, W.-R. Zhao, W. Zhang, H.-D. Deng, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, J. Appl. Phys. 106, 044905 (2009).
[CrossRef]

J. Magn. Magn. Mater.

K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
[CrossRef]

B. Hoffmann and W. Köhler, J. Magn. Magn. Mater. 262, 289 (2003).
[CrossRef]

J. Nanofluids

J. Philip and J. M. Laskar, J. Nanofluids 1, 3 (2012).
[CrossRef]

J. Opt. Soc. Am. B

Nature

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

Opt. Commun.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

J. Arlt, V. Garcez-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E 80, 041401 (2009).
[CrossRef]

Prog. Opt.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Supplementary Material (5)

» Media 1: MP4 (559 KB)     
» Media 2: MP4 (769 KB)     
» Media 3: AVI (1306 KB)     
» Media 4: MP4 (1268 KB)     
» Media 5: AVI (3912 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical tweezers scheme. The optical traps were created and controlled by the spatial light modulator (LCSLM). The images were taken by camera under white-light illumination.

Fig. 2.
Fig. 2.

Ring generation experiment. (a) Image taken with no laser beam. (b) Ferrofluid under laser beam. illumination; the power of the lighter spot is 20 mW; the power of the two darker spots is 6 mW. (c) When the power of the focused laser light was strong enough, the central part of the focused spot became transparent, and the magnetic nanoparticles formed a ring. (d) Shortly after the process started, the bright area grew to its maximal size. The power directed to the light spot for images (c) and (d) was 70 mW (see also Media 1).

Fig. 3.
Fig. 3.

Evolution of the bright spot: shortly after the laser was switched on, the bright area started changing its radius and position (see also Media 2).

Fig. 4.
Fig. 4.

Example of image with the light tail coming out from the dark ring.

Fig. 5.
Fig. 5.

Three traps create three rings of magnetic nanoparticles. The rings interact with one another (see also Media 3).

Fig. 6.
Fig. 6.

Trap overlapping experiment. (a) Two overlapping traps of different power formed the single bright spot. (b)–(d) The trap of smaller power was shifted left (see also Media 4).

Fig. 7.
Fig. 7.

Cluster dynamics. The clusters (one is marked by a circle) were detached from the dark ring and traveled along the bright line (see also Media 5).

Fig. 8.
Fig. 8.

Dark trap experiment. (a) Image was taken directly in laser light (the light from halogen lamp was stopped). The optical vortex used for dark trap creation had topological charge m = 10 .

Metrics