Abstract

An efficient method to tune the spatial coherence of a degenerate laser over a broad range with minimum variation in the total output power is presented. It is based on varying the diameter of a spatial filter inside the laser cavity. The number of lasing modes supported by the degenerate laser can be controlled from 1 to 320,000, with less than a 50% change in the total output power. We show that a degenerate laser designed for low spatial coherence can be used as an illumination source for speckle-free microscopy that is nine orders of magnitude brighter than conventional thermal light.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  2. D. Kang and T. D. Milster, J. Opt. Soc. Am. A 26, 2577 (2009).
    [CrossRef]
  3. D. Kang and T. D. Milster, J. Opt. Soc. Am. A 26, 1954 (2009).
    [CrossRef]
  4. D. Kang and T. D. Milster, Opt. Lett. 34, 3247 (2009).
    [CrossRef]
  5. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085 (1999).
    [CrossRef]
  6. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. P. Istasse, Appl. Opt. 43, 1131 (2004).
    [CrossRef]
  7. D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1819 (2008).
    [CrossRef]
  8. A. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, Opt. Express 13, 9782 (2005).
    [CrossRef]
  9. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
    [CrossRef]
  10. S. Kubota and J. W. Goodman, Appl. Opt. 49, 4385 (2010).
    [CrossRef]
  11. B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
    [CrossRef]
  12. B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
    [CrossRef]
  13. J. Arnaud, Appl. Opt. 8, 189 (1969).
    [CrossRef]
  14. M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
    [CrossRef]
  15. M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
    [CrossRef]
  16. A. E. Siegman, Proc. SPIE 1868, 2 (1993).
    [CrossRef]
  17. A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
    [CrossRef]
  18. J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
    [CrossRef]
  19. W. Koechner, Solid-State Laser Engineering (Springer, 2006), Vol. 1.
  20. S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
    [CrossRef]

2013 (1)

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[CrossRef]

2011 (2)

B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

2010 (1)

2009 (4)

2008 (1)

2006 (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

2005 (1)

2004 (1)

1999 (1)

1993 (1)

A. E. Siegman, Proc. SPIE 1868, 2 (1993).
[CrossRef]

1969 (1)

1968 (1)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

1961 (1)

A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
[CrossRef]

Arnaud, J.

Buck, F.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[CrossRef]

B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
[CrossRef]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[CrossRef]

B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
[CrossRef]

Chu, K. K.

Davidson, N.

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
[CrossRef]

Dubois, F.

Eckhouse, V.

S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
[CrossRef]

Fox, A. G.

A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
[CrossRef]

Fridman, M.

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

Friesem, A.

S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
[CrossRef]

Friesem, A. A.

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

Geusic, J. E.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Goodman, J. W.

S. Kubota and J. W. Goodman, Appl. Opt. 49, 4385 (2010).
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Istasse, E. P.

Joannes, L.

Kang, D.

Kantor, I.

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006), Vol. 1.

Kubota, S.

Kwon, J. W.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Lee, S. Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Lee, S.-G.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Legros, J.-C.

Levinstein, H. J.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Li, T.

A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
[CrossRef]

Lim, D.

Mertz, J.

Milster, T. D.

Minetti, C.

Monnom, O.

Nixon, M.

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

Novella Requena, M.-L.

Park, C.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Park, S.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[CrossRef]

B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
[CrossRef]

Ronen, E.

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

Scheffold, F.

Sedghani, S.

S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
[CrossRef]

Shin, S. C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Proc. SPIE 1868, 2 (1993).
[CrossRef]

Singh, S.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Smith, R. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Völker, A.

Weber, B.

Yoo, S. S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

Zakharov, P.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Bell Syst. Tech. J. (1)

A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
[CrossRef]

Displays (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, Displays 27, 91 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[CrossRef]

Opt. Commun. (1)

S. Sedghani, V. Eckhouse, A. Friesem, and N. Davidson, Opt. Commun. 282, 1861 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kantor, Phys. Rev. Lett. 106, 223901 (2011).
[CrossRef]

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys. Rev. Lett. 110, 184102 (2013).
[CrossRef]

Proc. SPIE (1)

A. E. Siegman, Proc. SPIE 1868, 2 (1993).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer, 2006), Vol. 1.

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental arrangement for controlling the number of lasing modes, and thereby the spatial coherence, of a degenerate laser. The degenerate laser consists of a gain medium, front and back flat mirrors, and two lenses in a 4f telescope configuration. The number of lasing modes is controlled by means of a variable pinhole aperture positioned at the focal plane between the lenses. In the imaging experiments, the collimated laser output illuminated a sample whose far-field speckle pattern was detected by means of a CCD camera.

Fig. 2.
Fig. 2.

Experimental and calculated speckle contrast and laser output energy as a function of the pinhole diameter. (A) Experimental speckle contrast (red circles with solid line) and calculated speckle contrast (blue squares with dotted line) as a function of the pinhole diameter, (B) the measured output energy (red circles with solid line) as a function of the pinhole diameter and the corresponding number of modes, found by measuring the relative beam quality M4. The blue squares with dotted line indicate the expected output energy if the number of modes would have been selected by means of spatial filtering outside the cavity, assuming the energy was equally distributed among all 320,000 lasing modes supported with the largest pinhole.

Fig. 3.
Fig. 3.

Experimental demonstration for speckle-free full-field imaging with our degenerate laser. (A) Detected image of a resolution chart and diffuser, using a small pinhole diameter (single-mode lasing with high spatial coherence), (B) detected image using a large pinhole diameter (multimode lasing with low spatial coherence).

Fig. 4.
Fig. 4.

Numerical simulations of speckle contrast and output energy as a function of the number of modes. (A) Calculated speckle contrast as a function of the number of simulation realizations; the different curves correspond to different pinhole diameters normalized by the diffraction-limited diameter (DL). (B) Output energy as a function of the number of modes as estimated by the pinhole area over the DL area; red circles with solid line denote the results for a degenerate cavity, and blue squares with dashed line denote the results for a stable hemispherical cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=σI/I,

Metrics