Abstract

To increase the photovoltaic efficiency of solar cells, green and red upconversion (UC) emissions produced at an excitation of 1550 nm were investigated. A drastically enhanced red UC emission was observed in near-stoichiometric LiNbO3 crystal heavily doped with Er3+ ions (Er:NSLN). Raman spectra showed that the maximum phonon energy shifted from 631cm1 in Er3+-doped congruent LiNbO3 (Er:CLN) to 871cm1 in Er:NSLN crystal. The time decay of the S3/24I15/24 transition suggested that the Er3+ cluster sites (ErLi2+-ErNb2) were dissociated in the Er:NSLN crystal. The visible UC luminescence converted from near infrared at the wavelength of 1550 nm was important to enlarge the solar spectrum response of solar cell.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription