Abstract

Using a quantum cascade laser emitting at 7.85 μm, a middle infrared active coherent laser spectrometer has been developed for the standoff detection of vapor phase chemicals. The first prototype has been tested using diffuse target backscattering at ranges up to 30m. Exploiting the continuous frequency tuning of the laser source, spectra of water vapor, methane, nitrous oxide, and hydrogen peroxide were recorded. A forward model of the instrument was used to perform spectral unmixing and retrieve line-of-sight integrated concentrations and their one-sigma uncertainties. Performance was found to be limited by speckle noise originating from topographic targets. For absorbers with large absorption cross sections such as nitrous oxide (>1019cm2·molecule1), normalized detection sensitivities range between 14 and 0.3ppm·m·Hz1/2, depending on the efficiency of the speckle reduction scheme implemented.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry

Neil A. Macleod, Francisco Molero, and Damien Weidmann
Opt. Express 23(2) 912-928 (2015)

Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements

Simon Lambert-Girard, Martin Allard, Michel Piché, and François Babin
Appl. Opt. 54(7) 1647-1656 (2015)

Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth's atmosphere

Lilian Joly, Claude Robert, Bertrand Parvitte, Valery Catoire, Georges Durry, Guy Richard, Bernard Nicoullaud, and Virginie Zéninari
Appl. Opt. 47(9) 1206-1214 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription