Abstract

We suggest the use of nano-fractal antennas for plasmonic coupling to enhance nanowire (NW) photovoltaic power conversion efficiency. Silicon radial pn junction NWs positioned inside Apollonian and Sierpinski nano-fractal antennas are simulated with different topologies and NW lengths. An enhancement in power conversion efficiency ranging from 12% to up to 24% over the same NW without antenna case is achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
    [CrossRef]
  2. S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
    [CrossRef]
  3. H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).
  4. S. Abdellatif, K. Kirah, H. Ghalli, and W. Anis, Opt. Mater. Express 2, 1432 (2012).
    [CrossRef]
  5. L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, Opt. Express 21, A313 (2013).
    [CrossRef]
  6. S. Sederberg and A. Y. Elezzabi, Opt. Express 19, 10456 (2011).
    [CrossRef]
  7. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Co., 1977).
  8. C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
    [CrossRef]
  9. G. Volpe, G. Volpe, and R. Quidant, Opt. Express 19, 3612 (2011).
    [CrossRef]
  10. B. M. Kayes, “Radial pn junction, wire array solar cells,” Ph.D. thesis (California Institute of Technology, 2009).
  11. “Solar spectral irradiance: Air mass 1.5,” National Renewable Energy Laboratory, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  12. COMSOL MULTIPHYSICS software, Version 4.2, http://www.comsol.com .
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  14. H. S. M. Coxeter, Amer. Math. 75, 5 (1968).
    [CrossRef]
  15. L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).
  16. S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
    [CrossRef]

2013

2012

2011

S. Sederberg and A. Y. Elezzabi, Opt. Express 19, 10456 (2011).
[CrossRef]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

G. Volpe, G. Volpe, and R. Quidant, Opt. Express 19, 3612 (2011).
[CrossRef]

L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).

2009

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

2005

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

1998

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
[CrossRef]

1968

H. S. M. Coxeter, Amer. Math. 75, 5 (1968).
[CrossRef]

Abdellatif, S.

S. Abdellatif, K. Kirah, H. Ghalli, and W. Anis, Opt. Mater. Express 2, 1432 (2012).
[CrossRef]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

Anis, W.

S. Abdellatif, K. Kirah, H. Ghalli, and W. Anis, Opt. Mater. Express 2, 1432 (2012).
[CrossRef]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

Atwatera, H. A.

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Brongersma, M.

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

Cardama, A.

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

Coxeter, H. S. M.

H. S. M. Coxeter, Amer. Math. 75, 5 (1968).
[CrossRef]

Delsol, R.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Elezzabi, A. Y.

Fan, R.-H.

Faucherand, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Ghali, H.

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

Ghalli, H.

Huang, X.-R.

Jaussaud, C.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Juodkazis, S.

L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).

Kayes, B. M.

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

B. M. Kayes, “Radial pn junction, wire array solar cells,” Ph.D. thesis (California Institute of Technology, 2009).

Kirah, K.

S. Abdellatif, K. Kirah, H. Ghalli, and W. Anis, Opt. Mater. Express 2, 1432 (2012).
[CrossRef]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

Levis, M.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Lewis, N. S.

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Majewski, M. L.

Mandelbrot, B.

B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Co., 1977).

Nishi, Y.

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

Noël, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Peng, R.-W.

Perraud, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Peumans, P.

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

Philip Wong, H.-S.

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

Poncet, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Pous, R.

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

Puente-Baliarda, C.

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

Quidant, R.

Rakic, A. D.

Romeu, J.

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

Rosa, L.

L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).

Rouvière, E.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Sederberg, S.

Shao, M.-R.

Sun, K.

L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).

Thony, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Volpe, G.

Wang, M.

Watson, T. J.

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Zhu, L.-H.

Amer. Math.

H. S. M. Coxeter, Amer. Math. 75, 5 (1968).
[CrossRef]

Appl. Opt.

IEEE Trans. Antennas Propag.

C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE Trans. Antennas Propag. 46, 517 (1998).
[CrossRef]

J. Appl. Phys.

B. M. Kayes, H. A. Atwatera, T. J. Watson, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Opt. Express

Opt. Mater. Express

Phys. Status Solidi RRL

L. Rosa, K. Sun, and S. Juodkazis, Phys. Status Solidi RRL 5, 175 (2011).

Proc. SPIE

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, Proc. SPIE 8204820412 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, Sol. Energy Mater. Sol. Cells 93, 1568 (2009).
[CrossRef]

Other

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Co., 1977).

B. M. Kayes, “Radial pn junction, wire array solar cells,” Ph.D. thesis (California Institute of Technology, 2009).

“Solar spectral irradiance: Air mass 1.5,” National Renewable Energy Laboratory, http://rredc.nrel.gov/solar/spectra/am1.5/ .

COMSOL MULTIPHYSICS software, Version 4.2, http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Apollonian fractal model drawn inside a square of 1 μm side. (b) The Sierpinski fractal model inside a rectangle of dimensions 1μm×2μm. The white areas represent the gaps of the antennas.

Fig. 2.
Fig. 2.

Electric field distribution for the Apollonian fractal with three NWs of length (a) 5 μm and (b) 13 μm. The white areas represent the gaps of the antennas.

Fig. 3.
Fig. 3.

NW is placed in the gap between two third-order Sierpinski triangles.

Fig. 4.
Fig. 4.

Four NWs placed in the gaps of a third-order Sierpinski triangle. The lengths of the NWs are (a) 5 μm and (b) 13 μm. The white areas represent the gaps of the antennas.

Fig. 5.
Fig. 5.

Simulated S11 parameter on a log scale for the configuration shown in Fig. 4. Three plasmonic modes were obtained, of which two are inside the Si absorption band. The 3 dB bandwidth is about 10 THz.

Fig. 6.
Fig. 6.

Transmission, reflection, and absorption of the configuration shown in Fig. 4. At resonance, reflection is minimal, transmission is maximal, and absorption is almost zero.

Fig. 7.
Fig. 7.

Four NWs inside nanoring antennas show an efficiency of 15%, which is less than when placed inside the third-order Sierpinski triangle (15.5%).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r=rarbrc(rarb+rcrb+rcra±2rarbrc(ra+rb+rc)),

Metrics