Abstract

We report the design, fabrication, and experimental characterization of high-aspect-ratio metallic gratings integrated with nanoscale semiconductor structures, which enable efficient light–matter interaction at the nanoscale over interaction lengths as long as two times of the effective optical wavelength. The efficient light–matter interaction at the nanoscale is enabled by excitation of the guided modes of subwavelength slab waveguides formed by the high-aspect-ratio metallic gratings. By controlling the height of the high-aspect-ratio gratings, the wavelength of the guided modes through the nanoscale semiconductor structures is determined.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
    [CrossRef]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
    [CrossRef]
  5. H. Liu and P. Lalanne, Nature 452, 728 (2008).
    [CrossRef]
  6. E. Betzig and J. K. Trautman, Science 257, 189 (1992).
    [CrossRef]
  7. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).
  8. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
    [CrossRef]
  9. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
    [CrossRef]
  10. B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
    [CrossRef]
  11. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
    [CrossRef]
  12. D. B. Shao and S. C. Che, Appl. Phys. Lett. 86, 253107 (2005).
    [CrossRef]
  13. X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
    [CrossRef]
  14. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Opt. Lett. 28, 423 (2003).
    [CrossRef]
  15. J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
    [CrossRef]
  16. J. Hashizume and F. Koyama, Opt. Express 12, 6391 (2004).
    [CrossRef]
  17. C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
    [CrossRef]
  18. A. Polman, Science 322, 868 (2008).
    [CrossRef]
  19. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  20. J. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
    [CrossRef]
  21. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
    [CrossRef]
  22. C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).
    [CrossRef]
  23. C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
    [CrossRef]
  24. C. W. Berry and M. Jarrahi, in Proceedings of Conference on Lasers and Electro-Optics (IEEE, 2010), paper CFI2.
  25. C. W. Berry and M. Jarrahi, in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011).
  26. N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express 21, 17221 (2013).
    [CrossRef]
  27. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
    [CrossRef]
  28. J. T. Shen and P. M. Platzman, Phys. Rev. B 70, 035101 (2004).
    [CrossRef]
  29. B.-Y. Hsieh and M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).
    [CrossRef]
  30. C. W. Berry, J. Moore, and M. Jarrahi, Opt. Express 19, 1236 (2011).
    [CrossRef]
  31. Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef]
  32. S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
    [CrossRef]

2013

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express 21, 17221 (2013).
[CrossRef]

2012

C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).
[CrossRef]

2011

B.-Y. Hsieh and M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).
[CrossRef]

C. W. Berry, J. Moore, and M. Jarrahi, Opt. Express 19, 1236 (2011).
[CrossRef]

B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
[CrossRef]

2010

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

2009

2008

A. Polman, Science 322, 868 (2008).
[CrossRef]

H. Liu and P. Lalanne, Nature 452, 728 (2008).
[CrossRef]

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

2007

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

2006

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

2005

D. B. Shao and S. C. Che, Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

2004

J. Hashizume and F. Koyama, Opt. Express 12, 6391 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

J. T. Shen and P. M. Platzman, Phys. Rev. B 70, 035101 (2004).
[CrossRef]

2003

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Opt. Lett. 28, 423 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

2002

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

2001

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef]

2000

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

1992

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

J. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).
[CrossRef]

C. W. Berry, J. Moore, and M. Jarrahi, Opt. Express 19, 1236 (2011).
[CrossRef]

C. W. Berry and M. Jarrahi, in Proceedings of Conference on Lasers and Electro-Optics (IEEE, 2010), paper CFI2.

C. W. Berry and M. Jarrahi, in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011).

Betzig, E.

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

J. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Chandran, A.

Che, S. C.

D. B. Shao and S. C. Che, Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Coe, J. V.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Fan, S.

J. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Hashemi, M. R.

N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express 21, 17221 (2013).
[CrossRef]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

Hashizume, J.

Heer, J. M.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Hesselink, L.

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Hsieh, B.-Y.

B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
[CrossRef]

B.-Y. Hsieh and M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).
[CrossRef]

Ishi, T.

Jarrahi, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express 21, 17221 (2013).
[CrossRef]

C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).
[CrossRef]

B.-Y. Hsieh and M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).
[CrossRef]

C. W. Berry, J. Moore, and M. Jarrahi, Opt. Express 19, 1236 (2011).
[CrossRef]

B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
[CrossRef]

C. W. Berry and M. Jarrahi, in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011).

C. W. Berry and M. Jarrahi, in Proceedings of Conference on Lasers and Electro-Optics (IEEE, 2010), paper CFI2.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

Kamaev, V.

C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

Koyama, F.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, Nature 452, 728 (2008).
[CrossRef]

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

Linke, R. A.

Liu, C.

C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, Nature 452, 728 (2008).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Moore, J.

Nahata, A.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Ohashi, K.

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

Platzman, P. M.

J. T. Shen and P. M. Platzman, Phys. Rev. B 70, 035101 (2004).
[CrossRef]

Polman, A.

A. Polman, Science 322, 868 (2008).
[CrossRef]

Rodriguez, K. R.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Che, Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Shen, J. T.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

J. T. Shen and P. M. Platzman, Phys. Rev. B 70, 035101 (2004).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Takakura, Y.

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef]

Teeters-Kennedy, S.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Tian, H.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Trautman, J. K.

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

Vardeny, Z. V.

C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Veronis, G.

J. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).
[CrossRef]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express 21, 17221 (2013).
[CrossRef]

B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
[CrossRef]

White, J.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

Yu, Z.

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Acc. Chem. Res.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008).
[CrossRef]

Ann. Rev. Phys. Chem.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Ann. Rev. Phys. Chem. 59, 179 (2008).

Appl. Phys. Lett.

D. B. Shao and S. C. Che, Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Chem. Rev.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

J. Appl. Phys.

B.-Y. Hsieh and M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).
[CrossRef]

J. Vis. Exp.

C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Vis. Exp. 77, e50517 (2013).
[CrossRef]

Jpn. J. Appl. Phys.

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Nano Lett.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Nat. Commun.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Commun. 4, 1622 (2013).
[CrossRef]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

H. Liu and P. Lalanne, Nature 452, 728 (2008).
[CrossRef]

New J. Phys.

C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).
[CrossRef]

Opt. Commun.

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

B.-Y. Hsieh, N. Wang, and M. Jarrahi, Opt. Photon. News 22(12), 48 (2011).
[CrossRef]

Phys. Rev. B

J. T. Shen and P. M. Platzman, Phys. Rev. B 70, 035101 (2004).
[CrossRef]

Phys. Rev. Lett.

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef]

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Science

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef]

A. Polman, Science 322, 868 (2008).
[CrossRef]

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Other

C. W. Berry and M. Jarrahi, in Proceedings of Conference on Lasers and Electro-Optics (IEEE, 2010), paper CFI2.

C. W. Berry and M. Jarrahi, in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Cross-sectional view of the designed high-aspect-ratio metallic grating integrated with GaAs nanostructures, which supports multiple TEM guided modes in response to a TM-polarized incident optical beam. The metal thickness should be larger than or comparable with the metal skin depth to confine light inside the subwavelength slab waveguide formed by the metallic gratings. Within this regime, light–matter interaction with the GaAs nanostructures would be independent of the metal thickness on the sidewalls. (b) Transmission spectrum of a normally incident TM-polarized optical beam, into the GaAs nanostructures integrated with the designed metallic grating for a grating height of 400 nm. Inset shows the electric field color map of the transmitted optical beam at the transmission peaks. (c) Transmission spectrum of the normally incident TM-polarized optical beam into the GaAs nanostructures integrated with the designed metallic grating as a function of the grating height.

Fig. 2.
Fig. 2.

Fabrication process of the high-aspect-ratio nanoscale metallic gratings: (a) deposition of a SiO2 layer, (b) pattering a Ni hard mask, (c) etching the SiO2 layer and the underlying GaAs substrate, (d) Ti/Au sputtering, (e) lift-off, and (f) deposition of a SiO2 antireflection coating.

Fig. 3.
Fig. 3.

(a) SEM image of an implemented high-aspect-ratio grating with a 400 nm grating height. The optical transmission spectrum into the GaAs nanostructures integrated with the grating prototypes is shown in (b) and (c) for grating heights of 400 and 440 nm, respectively.

Metrics