Abstract

We theoretically investigate the homogenization of the dielectric response to transverse electric waves of a transverse grating characterized by the Kapitza condition; i.e., the permittivity is rapidly modulated with a modulation depth scaling as the large wavelength-to-modulation-period ratio. We show that the resulting effective dielectric permittivity, in addition to the standard average of the underlying dielectric profile, has a further contribution arising from the fast and deep dielectric modulation. Such a contribution turns out to be comparable with the other one and hence can provide an additional method for designing dielectric metamaterials. As an example, we discuss an effective metal-to-dielectric transition produced by the Kapitza contribution obtained by changing the grating depth, a remarkable result for applications involving epsilon-near-zero metamaterial design.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription