Abstract

We investigate the loss mechanism in three-moded multimode-interference couplers that are the building blocks of a compact and low-loss waveguide crossing structure. Broadband silicon waveguide crossing arrays with <0.01dB insertion loss per crossing are proposed using cascaded multimode-interference couplers, where lateral subwavelength nanostructures are used to reduce the insertions loss. We design and fabricate a 101×101 waveguide crossing array with a pitch of 3.08 μm. Insertion loss of 0.02dB per crossing and crosstalk <40dB at 1550 nm operating wavelength and a broad transmission spectrum ranging from 1520 to 1610 nm are experimentally demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, Opt. Express 18, 16146 (2010).
    [CrossRef]
  2. H. Chen and A. W. Poon, IEEE Photon. Technol. Lett. 18, 2260 (2006).
    [CrossRef]
  3. C. Manolatou and H. A. Haus, in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.
  4. A. M. Jones, C. T. DeRose, A. L. Lentine, D. C. Trotter, A. L. Starbuck, and R. A. Norwood, Opt. Express 21, 12002 (2013).
    [CrossRef]
  5. C.-H. Chen and C.-H. Chiu, IEEE J. Quantum Electron. 46, 1656 (2010).
    [CrossRef]
  6. M. Popovic, E. P. Ippen, and F. Kartner, in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 56–57.
  7. J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
    [CrossRef]
  8. A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
    [CrossRef]
  9. A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
    [CrossRef]
  10. L. B. Soldano and E. C. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  11. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
    [CrossRef]

2013 (1)

2012 (1)

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

2011 (2)

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

2010 (2)

2006 (1)

H. Chen and A. W. Poon, IEEE Photon. Technol. Lett. 18, 2260 (2006).
[CrossRef]

1998 (1)

J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Bock, P. J.

Cheben, P.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, Opt. Express 18, 16146 (2010).
[CrossRef]

Chen, C.-H.

C.-H. Chen and C.-H. Chiu, IEEE J. Quantum Electron. 46, 1656 (2010).
[CrossRef]

Chen, H.

H. Chen and A. W. Poon, IEEE Photon. Technol. Lett. 18, 2260 (2006).
[CrossRef]

Chen, R. T.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Chiu, C.-H.

C.-H. Chen and C.-H. Chiu, IEEE J. Quantum Electron. 46, 1656 (2010).
[CrossRef]

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

Delâge, A.

Densmore, A.

DeRose, C. T.

Halir, R.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Hall, T. J.

Haus, H. A.

C. Manolatou and H. A. Haus, in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.

Hosseini, A.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Huang, J.

J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
[CrossRef]

Ippen, E. P.

M. Popovic, E. P. Ippen, and F. Kartner, in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 56–57.

Janz, S.

Jones, A. M.

Kartner, F.

M. Popovic, E. P. Ippen, and F. Kartner, in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 56–57.

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

Kwong, D. N.

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Lapointe, J.

Lentine, A. L.

Maese-Novo, A.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Manolatou, C.

C. Manolatou and H. A. Haus, in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.

Molina-Fernández, I.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Norwood, R. A.

Ortega-Monux, A.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Osgood, R.

J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
[CrossRef]

Pennings, E. C.

L. B. Soldano and E. C. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Poon, A. W.

H. Chen and A. W. Poon, IEEE Photon. Technol. Lett. 18, 2260 (2006).
[CrossRef]

Popovic, M.

M. Popovic, E. P. Ippen, and F. Kartner, in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 56–57.

Scarmozzino, R.

J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
[CrossRef]

Schmid, J.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Schmid, J. H.

Soldano, L. B.

L. B. Soldano and E. C. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Starbuck, A. L.

Subbaraman, H.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Trotter, D. C.

Wanguemert-Perez, J.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Xu, D.-X.

Xu, X.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Zavargo-Peche, L.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

Zhang, Y.

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

C.-H. Chen and C.-H. Chiu, IEEE J. Quantum Electron. 46, 1656 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Huang, R. Scarmozzino, and R. Osgood, IEEE Photon. Technol. Lett. 10, 1292 (1998).
[CrossRef]

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, IEEE Photon. Technol. Lett. 23, 1406 (2011).
[CrossRef]

H. Chen and A. W. Poon, IEEE Photon. Technol. Lett. 18, 2260 (2006).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Opt. Express (2)

Other (2)

C. Manolatou and H. A. Haus, in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.

M. Popovic, E. P. Ippen, and F. Kartner, in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 56–57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Top-view schematic of the cascaded MMI-based waveguide crossings. (b) Side view schematic of the waveguide structure with lateral cladding indicated. (c) Single waveguide crossing structure. (d)  1 × 1 MMI.

Fig. 2.
Fig. 2.

Schematics of simulated structures. (a)  1 × 1 MMI with single-mode access waveguides. (b)  1 × 1 MMI with tapered input output transitions. (c) MMI waveguide crossing using 1 × 1 MMI with tapered input output transition. (d) Simulated transmission versus lateral cladding index ( n c ) for the structure in (a)–(c). The inset of (d) shows the TE fraction versus n c for the fundamental mode in the single-mode access waveguide ( width = 0.6 μm , solid blue curve) and the second-order mode in the MMI region ( width = 1.2 μm , dashed green line).

Fig. 3.
Fig. 3.

(a)–(c) Simulated structures for investigation of coupling efficiencies into the 1 × 1 MMI shown in Figs. 2(a)2(c). (d), (e) Simulated waveguide crossing arrays for (d)  n c = 1 , L in = 1.35 μm , and L s = 1.04 μm and (e)  n c = 2.5 , L in = 2.27 μm , and L s = 1.88 μm .

Fig. 4.
Fig. 4.

(a) Schematic of a cross-grid MMI-based waveguide array crossing. A 7 × 7 cross grid is shown for simplicity. (b) Optical microscope image of the fabricated 101 × 101 cross grid.

Fig. 5.
Fig. 5.

SEM images of the fabricated waveguide array crossings (a), (b) with and (c), (d) without index engineering of the lateral claddings.

Fig. 6.
Fig. 6.

Measured transmission for 101 cascaded MMI crossings with (black) and without (blue) index engineering, and the crosstalk of index-engineered MMI crossing.

Tables (1)

Tables Icon

Table 1. Modal Field Excitation Coefficients c m in the Three-Mode Sections ( Width = W MMI ) in Figs. 3(a) and 3(b) and in the Crossing Section ( Width = L c ) in Fig. 3(c)a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β m = β 0 1 + K T 0 2 K T m 2 β 0 ,
Δ φ m ( P / 4 ) λ 0 2 ( m + 1 ) 4 π 2 N n f 2 W e 0 2 [ 1 8 λ 0 n f 2 D 2 6 π W e 0 ( n f 2 D 2 n c 2 D 2 ) 2 ] ,
β 0 β 2 = 2 π n / L MMI , n : integer .
F TE = E x H y d s P z d s .

Metrics