Abstract

This Letter presents a simple, efficient approach for high surface-enhanced Raman scattering by one-step controllable fabrication of hierarchical structures (nanoparticles+subwavelength ripples) on silicon substrates in silver nitrate solutions using femtosecond double pulses based on nanoscale electron dynamics control. As the delays of the double pulses increase from 0 fs to 1 ps, the hierarchical structures can be controlled with (1) nanoparticles—the number of nanoparticles in the range of 40–100 nm reaches the maximum at 800 fs and (2) ripples—the subwavelength ripples become intermittent with decreased ablation depths. The redistributed nanoparticles and the modified ripple structures contribute to the maximum enhancement factor of 2.2×108 (measured by 106M rhodamine 6G solution) at the pulse delay of 800 fs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
    [CrossRef]
  2. Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
    [CrossRef]
  3. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).
    [CrossRef]
  4. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
    [CrossRef]
  5. S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
    [CrossRef]
  6. M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
    [CrossRef]
  7. L. Jiang, D. W. Ying, X. Li, and Y. F. Lu, Opt. Lett. 37, 3648 (2012).
    [CrossRef]
  8. S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006).
    [CrossRef]
  9. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
    [CrossRef]
  10. N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
    [CrossRef]
  11. L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, Opt. Express 20, 21505 (2012).
    [CrossRef]
  12. S. Noël and J. Hermann, Appl. Phys. Lett. 94, 053120 (2009).
    [CrossRef]
  13. I. W. Sztainbuch, J. Chem. Phys. 125, 124707 (2006).
    [CrossRef]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
    [CrossRef]
  15. S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
    [CrossRef]
  16. E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
    [CrossRef]
  17. S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
    [CrossRef]
  18. X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).
    [CrossRef]
  19. Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, Opt. Express 13, 3096 (2005).
    [CrossRef]
  20. L. Jiang and H. L. Tsai, Appl. Phys. Lett. 87, 151104 (2005).
    [CrossRef]
  21. M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
    [CrossRef]
  22. M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
    [CrossRef]

2012

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, Opt. Express 20, 21505 (2012).
[CrossRef]

L. Jiang, D. W. Ying, X. Li, and Y. F. Lu, Opt. Lett. 37, 3648 (2012).
[CrossRef]

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).
[CrossRef]

2011

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

2010

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

2009

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).
[CrossRef]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

S. Noël and J. Hermann, Appl. Phys. Lett. 94, 053120 (2009).
[CrossRef]

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

2007

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

2006

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

I. W. Sztainbuch, J. Chem. Phys. 125, 124707 (2006).
[CrossRef]

S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006).
[CrossRef]

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

2005

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, Opt. Express 13, 3096 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Abargues, R.

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Abderrafi, K.

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Ahn, Y.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Astilean, S.

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

Audouard, E.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

Baia, L.

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

Baia, M.

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

Boettcher, S. W.

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Bonse, J.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Cai, W. P.

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Chai, Y. H.

Chang, S. I.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Chen, S. J.

Cheng, C. F.

Chon, H.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Choo, J.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Chung, A. J.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Collins, L. A.

S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Deng, Y. P.

Erickson, D.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Faure, N.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

Forster, M.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

Guan, Z. Q.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

Ha, S. M.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Hermann, J.

S. Noël and J. Hermann, Appl. Phys. Lett. 94, 053120 (2009).
[CrossRef]

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Hoehm, S.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

Hu, S. X.

S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006).
[CrossRef]

Huh, Y. S.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Jiang, L.

Jiménez, E.

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Kautek, W.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Krueger, J.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

Lee, E. K.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Lee, S. J.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Leng, N.

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

Leng, Y. X.

Li, R. X.

Li, X.

X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).
[CrossRef]

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, Opt. Express 20, 21505 (2012).
[CrossRef]

L. Jiang, D. W. Ying, X. Li, and Y. F. Lu, Opt. Lett. 37, 3648 (2012).
[CrossRef]

Lim, C.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Lin, C. H.

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

Liu, G. Q.

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

Liu, P. J.

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

Liu, P. S.

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

Lu, H. H.

Lu, Y. F.

Marine, W.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Martínez-Pastor, J. P.

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Moskovits, M.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

Noël, S.

S. Noël and J. Hermann, Appl. Phys. Lett. 94, 053120 (2009).
[CrossRef]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

Popp, J.

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

Rosenfeld, A.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Schierhorn, M.

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Seong, G. H.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Shi, X. S.

Stoian, R.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

Stucky, G. D.

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Sztainbuch, I. W.

I. W. Sztainbuch, J. Chem. Phys. 125, 124707 (2006).
[CrossRef]

Tsai, H. L.

Valdés, J. L.

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Wang, C.

Xiao, H.

Xie, X. H.

Xiong, H.

Xu, C. C.

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

Xu, H. X.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

Xu, Z. Z.

Yang, S. K.

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

Ying, D. W.

Yuan, Y. P.

Zeng, H. B.

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Adv. Mater.

M. Schierhorn, S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits, Adv. Mater. 18, 2829 (2006).
[CrossRef]

Anal. Chem.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef]

Appl. Phys. A

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, Appl. Phys. A 81, 345 (2005).
[CrossRef]

N. Leng, L. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl. Phys. A 109, 679 (2012).
[CrossRef]

X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).
[CrossRef]

Appl. Phys. Lett.

S. Noël and J. Hermann, Appl. Phys. Lett. 94, 053120 (2009).
[CrossRef]

L. Jiang and H. L. Tsai, Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

M. Baia, L. Baia, S. Astilean, and J. Popp, Appl. Phys. Lett. 88, 143121 (2006).
[CrossRef]

J. Appl. Phys.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
[CrossRef]

J. Chem. Phys.

I. W. Sztainbuch, J. Chem. Phys. 125, 124707 (2006).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

J. Phys. Chem. C

S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, and P. S. Liu, J. Phys. Chem. C 113, 6480 (2009).
[CrossRef]

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, J. Phys. Chem. C 111, 17985 (2007).
[CrossRef]

Langmuir

E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, Langmuir 26, 7458 (2010).
[CrossRef]

Microfluid. Nanofluid.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011).
[CrossRef]

Phys. Rev. Lett.

S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006).
[CrossRef]

Science

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Science 325, 594 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Surface morphologies of the silicon wafer substrates processed in 10 mM silver nitrate solutions by fs double-pulse train at various pulse delays: (a) 0 fs, (b) 400 fs, (c) 600 fs, (d) 800 fs, (e) partial enlarged view of (a), and (f) partial enlarged view of (d).

Fig. 2.
Fig. 2.

Size distribution of the silver nanoparticles fabricated by fs double-pulse train with different pulse delays: (a) 0 fs and (b) 800 fs.

Fig. 3.
Fig. 3.

Surface morphologies of the silicon wafer substrates machined in deionized water by fs double-pulse train with different pulse delays: (a) 0 fs and (b) 800 fs.

Fig. 4.
Fig. 4.

SERS spectrum of substrates fabricated by fs double-pulse train at various pulse delays: black, 800 fs; red, 400 fs; blue, 600 fs; cyan, 1000 fs; olive, 0 fs; green, the unprocessed region (reference).

Tables (1)

Tables Icon

Table 1. Enhancement Factors with Different Pulse Delays

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Si(NP)+4AgNO3+2H2OSiO2(NP)+4Ag(NP)+4H++4NO3.
EF=IsurfNsurf/IvolNvol,

Metrics