Abstract

We modify the well-known photothermal beam deflection technique to study ultrafast nonlinearities. Using phase-sensitive detection we directly measure the temporal and polarization dynamics of nonlinear refraction (NLR) with sensitivity to optically induced phase changes of approximately λ/20,000. We use the relative polarization dependence of excitation and probe to separate the isotropic and reorientational components of the NLR.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
    [CrossRef]
  2. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
    [CrossRef]
  3. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
    [CrossRef]
  4. Q. Zhong and J. T. Fourkas, J. Phys. Chem. B 112, 15529 (2008).
    [CrossRef]
  5. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Opt. 20, 1333 (1981).
    [CrossRef]
  6. J. D. Spear and R. E. Russo, J. Appl. Phys. 70, 580 (1991).
    [CrossRef]
  7. G. P. Agrawal, Phys. Rev. Lett. 64, 2487 (1990).
    [CrossRef]
  8. M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. V. Stryland, Opt. Lett. 17, 258 (1992).
    [CrossRef]
  9. W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
    [CrossRef]
  10. M. Terazima, Opt. Lett. 20, 25 (1995).
    [CrossRef]
  11. Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
    [CrossRef]
  12. Y. H. Chen, S. Varma, I. Alexeev, and H. Milchberg, Opt. Express 15, 7458 (2007).
    [CrossRef]
  13. P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
    [CrossRef]
  14. Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
    [CrossRef]
  15. J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
    [CrossRef]
  16. L. W. Casperson, Appl. Opt. 12, 2434 (1973).
    [CrossRef]
  17. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, Adv. Opt. Photon. 2, 60 (2010).
    [CrossRef]
  18. K. Kamada, Proc. SPIE 4797, 65 (2003).
    [CrossRef]
  19. G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices, Wiley Series in Pure and Applied Optics (Wiley, 2012).
  20. D. Milam, Appl. Opt. 37, 546 (1998).
    [CrossRef]
  21. Subsequent to this work, analysis including GVM shows a small nuclear contribution with isotropic symmetry that gives an excellent fit to the cross-correlation data.
  22. H. Hu, “Third order nonlinearity of organic molecules,” Ph.D. dissertation (University of Central Florida, Orlando, FL, 2012).

2010 (1)

2008 (1)

Q. Zhong and J. T. Fourkas, J. Phys. Chem. B 112, 15529 (2008).
[CrossRef]

2007 (1)

2003 (1)

K. Kamada, Proc. SPIE 4797, 65 (2003).
[CrossRef]

2002 (1)

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

1998 (1)

1997 (2)

Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
[CrossRef]

Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
[CrossRef]

1996 (2)

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
[CrossRef]

1995 (1)

1992 (1)

1991 (2)

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

J. D. Spear and R. E. Russo, J. Appl. Phys. 70, 580 (1991).
[CrossRef]

1990 (2)

G. P. Agrawal, Phys. Rev. Lett. 64, 2487 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
[CrossRef]

1981 (1)

1973 (1)

Adamietz, F.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Phys. Rev. Lett. 64, 2487 (1990).
[CrossRef]

Alexeev, I.

Amer, N. M.

Boccara, A. C.

Canioni, L.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Casperson, L. W.

Chang, Y. J.

Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
[CrossRef]

Chen, Y. H.

Christodoulides, D. N.

Cong, P.

Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
[CrossRef]

DeSalvo, R.

Ducasse, A.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Fourkas, J. T.

Q. Zhong and J. T. Fourkas, J. Phys. Chem. B 112, 15529 (2008).
[CrossRef]

Fournier, D.

Gilgenbach, R. M.

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

Hagan, D. J.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. V. Stryland, Opt. Lett. 17, 258 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

Hales, J. M.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

Heffelfinger, D. M.

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

Hu, H.

H. Hu, “Third order nonlinearity of organic molecules,” Ph.D. dissertation (University of Central Florida, Orlando, FL, 2012).

Jackson, W. B.

Kamada, K.

K. Kamada, Proc. SPIE 4797, 65 (2003).
[CrossRef]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
[CrossRef]

Khoo, I. C.

Kobyakov, A.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

Li, W.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
[CrossRef]

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
[CrossRef]

Milam, D.

Milchberg, H.

Morita, R.

Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
[CrossRef]

Negres, R. A.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

Russo, R. E.

J. D. Spear and R. E. Russo, J. Appl. Phys. 70, 580 (1991).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

Salamo, G. J.

Sarger, L.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Sato, Y.

Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
[CrossRef]

Segonds, P.

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Sell, J. A.

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. V. Stryland, Opt. Lett. 17, 258 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

Simon, J. D.

Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
[CrossRef]

Spear, J. D.

J. D. Spear and R. E. Russo, J. Appl. Phys. 70, 580 (1991).
[CrossRef]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, Adv. Opt. Photon. 2, 60 (2010).
[CrossRef]

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices, Wiley Series in Pure and Applied Optics (Wiley, 2012).

Stegeman, R. A.

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices, Wiley Series in Pure and Applied Optics (Wiley, 2012).

Stryland, E. W. V.

Terazima, M.

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, Adv. Opt. Photon. 2, 60 (2010).
[CrossRef]

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

Varma, S.

Ventzek, P. L. G.

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

Wang, J.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

Yamashita, M.

Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
[CrossRef]

Zhong, Q.

Q. Zhong and J. T. Fourkas, J. Phys. Chem. B 112, 15529 (2008).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 38, 1205 (2002).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
[CrossRef]

IEEE J. Quantum. Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum. Electron. 26, 760 (1990).
[CrossRef]

J. Appl. Phys. (2)

J. D. Spear and R. E. Russo, J. Appl. Phys. 70, 580 (1991).
[CrossRef]

J. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).
[CrossRef]

J. Chem. Phys. (1)

Y. J. Chang, P. Cong, and J. D. Simon, J. Chem. Phys. 106, 8639 (1997).
[CrossRef]

J. Phys. Chem. (1)

P. Cong, Y. J. Chang, and J. D. Simon, J. Phys. Chem. 100, 8613 (1996).
[CrossRef]

J. Phys. Chem. B (1)

Q. Zhong and J. T. Fourkas, J. Phys. Chem. B 112, 15529 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sato, R. Morita, and M. Yamashita, Jpn. J. Appl. Phys. 36, 2109 (1997).
[CrossRef]

Opt. Commun. (1)

W. Li, L. Sarger, L. Canioni, P. Segonds, F. Adamietz, and A. Ducasse, Opt. Commun. 132, 583 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

G. P. Agrawal, Phys. Rev. Lett. 64, 2487 (1990).
[CrossRef]

Proc. SPIE (1)

K. Kamada, Proc. SPIE 4797, 65 (2003).
[CrossRef]

Other (3)

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices, Wiley Series in Pure and Applied Optics (Wiley, 2012).

Subsequent to this work, analysis including GVM shows a small nuclear contribution with isotropic symmetry that gives an excellent fit to the cross-correlation data.

H. Hu, “Third order nonlinearity of organic molecules,” Ph.D. dissertation (University of Central Florida, Orlando, FL, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Beam deflection schematic. (a) Probe beam, (b) delay line, (c) excitation beam, (d) sample and the overlap between excitation and probe spot, (e) deflected probe beam for positive nonlinearity, and (f) quad cell detector.

Fig. 2.
Fig. 2.

Averaged index change Δnp as a function of delay τd in fused silica for copolarized (1) and cross-polarized cases (2), with L=1mm, λe=780nm, λp=650nm, we=170μm, wp,0=35μm, τe=241fs, and τp=170fs. (a) Ie,0=51GW/cm2 and (b) inset, Ie,0=0.35GW/cm2.

Fig. 3.
Fig. 3.

(a) Averaged index change (Δnp) as a function of delay τd in CS2 for (1) copolarized, (2) magic angle, and (3) cross-polarized cases with L=1mm, λe=800nm, λp=650nm, we=163μm, wp,0=38μm, τe=50fs, τp=155fs, Ie,0=31GW/cm2. (b) (4) isotropic nonlinear response (Δniso), (5) and reorientational nonlinear response (Δnre) based on Eq. (11), and (6) reconstructed (Δnp) for cross-polarized case in comparison to direct experiment data (3). Note, curves 3 and 6 are essentially indistinguishable from each other.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

θ(x,y,t)=z=0Lnp(x,y,t)·dz,
Δnp(x,y,t)=Δnp(t)exp(2(x2+y2)we2),
θ(t)=2LweeΔnp(t).
Ip(x,y,tτd,d)=Ip,0(d)·exp(2π2wp,02((yΔS(t))2+x2)d2λp2(tτd)2τp2),
ΔPp(tτd)Pp(tτd)·k0,pL2ewp,0we2πΔnp(t),
ΔEp(τd)Ep=ΔPp(tτd)dt/Pp(tτd)dt=k0,pL2ewp,0we2πΔnp,
Δnp=2n2(λp,λe)Ip(tτd)Ie(t)dt/Ip(tτd)dt,
ΔEpEp=k0,pL2ewp,0we4n2(λp,λe)Ie,0π1+τp2/τe2,
Δn(φ)=Δnxcos2(φ)+Δnysin2(φ),
Δn(φ)=Δniso[cos2(φ)+13sin2(φ)]+Δnre[cos2(φ)12sin2(φ)],
Δnco=Δniso+Δnre(φ=0°),
Δncross=13Δniso12Δnre(φ=90°),
Δnmagic=59Δniso(φ=54.7°).

Metrics