Abstract

Super-resolution in imaging through a transparent spherical microlens has attracted lots of attention because of recent promising experimental results with remarkable resolution improvement. To provide physical insight for this super-resolution phenomenon, previous studies adopted a phenomenological explanation mainly based on the super-focusing effect of a photonic nanojet, while a direct imaging calculation with classical imaging theory has rarely been studied. Here we theoretically model the imaging process through a microlens with vectorial electromagnetic analysis, and then exclude the previously plausible explanation of super-resolution based on the super-focusing effect. The results showed that, in the context of classical imaging theory subject to the two-point resolution criterion, a microlens with a perfect spherical shape cannot achieve the experimentally verified sub-100 nm resolution. Therefore, there must be some other physical mechanisms that contribute to the reported ultrahigh resolution but have not been revealed in theory.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef]
  2. H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
    [CrossRef]
  3. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
    [CrossRef]
  4. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
    [CrossRef]
  5. D. R. Mason, M. V. Jouravlev, and K. S. Kim, Opt. Lett. 35, 2007 (2010).
    [CrossRef]
  6. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
    [CrossRef]
  7. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, Opt. Express 15, 17334 (2007).
    [CrossRef]
  8. C. Sheppard, Optik 48, 329 (1977).

2012 (1)

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

2011 (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

2010 (1)

2009 (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

2007 (1)

2005 (1)

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

1977 (1)

C. Sheppard, Optik 48, 329 (1977).

Backman, V.

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
[CrossRef]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Heifetz, A.

Ho, S. T.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Jouravlev, M. V.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, Opt. Lett. 35, 2007 (2010).
[CrossRef]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Kim, K. S.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, Opt. Lett. 35, 2007 (2010).
[CrossRef]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Kong, S.-C.

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Li, X.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Mason, D. R.

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Ravi, K.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Sheppard, C.

C. Sheppard, Optik 48, 329 (1977).

Sheppard, C. J. R.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Simpson, J. J.

Taflove, A.

Vienne, G.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Wang, H.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Laser Photon. Rev. (1)

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, Laser Photon. Rev. 6, 354 (2012).
[CrossRef]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, and L. J. Kaufman, Nature 460, 498 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

C. Sheppard, Optik 48, 329 (1977).

Phys. Rev. Lett. (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of image reconstruction of two incoherent dipoles. The origin of the coordinates x-y-z coincides with the center of the microlens.

Fig. 2.
Fig. 2.

Snapshots of wave propagation in x-y plane for (a) λ=401.64nm and (b) λ=403.07nm, respectively. The white circle denotes the contour of the microlens. The small blue dot denotes the position of the dipole.

Fig. 3.
Fig. 3.

Reconstructed intensity distribution in x-y plane for (a) λ=401.64nm and (c) λ=403.07nm. Normalized intensity profile of (b) λ=401.64nm focused at x=4.87μm (blue dash–dot line), x=4.40μm (black solid line) and x=3.94μm (red dashed line), and (d) λ=403.07nm focused at x=6.84μm (black solid line), x=6.41μm (red dashed line) and x=4.87μm (blue dash–dot line).

Fig. 4.
Fig. 4.

(a) Reconstructed intensity distribution in x-y plane for λ=405.55nm. (b) Normalized intensity profile focused at x=8.17μm (black solid line), x=6.41μm (red dashed line), x=4.87μm (blue dash–dot line), and x=4.25μm (green dashed line).

Fig. 5.
Fig. 5.

Reconstructed intensity distribution in x-y plane for two incoherent dipoles separated by (a) 150 and (c) 100 nm. Normalized intensity profile for two incoherent dipoles separated by (b) 150 and (d) 100 nm at the focus of x=4.87μm (blue dash–dot line), x=4.40μm (black solid line), and x=3.94μm (red dashed line).

Fig. 6.
Fig. 6.

Images formed by two dipoles separated by (a) 150 and (b) 100 nm. The focus is chosen at x=4.34μm, where the intensity of the white light is maximal.

Metrics