Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Variable aperture controlled by microelectrofluidic iris

Not Accessible

Your library or personal account may give you access

Abstract

This Letter presents an adaptive liquid iris based on microelectrofluidic technology with experimental results. In the microelectrofluidic iris (MEFI), the electrostatic force generated by electrowetting in a surface channel unbalances the Laplace pressure acting on two fluidic interfaces between air and a light-absorbing liquid in two connected surface channels in a chamber. Then, the changed net pressure makes the iris aperture of the liquid diaphragm adjustable. The present MEFI was designed to have a tunable range from 4.2 to 0.85 mm in diameter and a tuning ratio of 80%. The MEFI was fabricated with a transparent electrode patterned on three glass plates and two channel spacers. Concerning the optical and interfacial properties of the MEFI for its operation, an aqueous near-infrared dye used in optical coherence tomography (OCT) was forced into a ring shape as the driving liquid in the hydrophobic chamber. By switching the segmented concentric control electrodes in steps, digital operation of the MEFI was successfully observed with clear aperture stops. The measured turnaround speed was 80mm/s, which is significantly higher than that for other comparable adaptive liquid irises. Due to a scalable aperture range with fast response, the concept of MEFI is expected to be widely applied in various optical systems that require high-quality imaging, as well as in real-time diagnostic OCT.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Varifocal liquid lens based on microelectrofluidic technology

Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, Seungwan Lee, and Woonbae Kim
Opt. Lett. 37(21) 4377-4379 (2012)

Adaptive liquid iris based on electrowetting

Lei Li, Chao Liu, Hongwen Ren, and Qiong-Hua Wang
Opt. Lett. 38(13) 2336-2338 (2013)

Circular dielectric liquid iris

C. Gary Tsai and J. Andrew Yeh
Opt. Lett. 35(14) 2484-2486 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved