Abstract

This Letter presents an adaptive liquid iris based on microelectrofluidic technology with experimental results. In the microelectrofluidic iris (MEFI), the electrostatic force generated by electrowetting in a surface channel unbalances the Laplace pressure acting on two fluidic interfaces between air and a light-absorbing liquid in two connected surface channels in a chamber. Then, the changed net pressure makes the iris aperture of the liquid diaphragm adjustable. The present MEFI was designed to have a tunable range from 4.2 to 0.85 mm in diameter and a tuning ratio of 80%. The MEFI was fabricated with a transparent electrode patterned on three glass plates and two channel spacers. Concerning the optical and interfacial properties of the MEFI for its operation, an aqueous near-infrared dye used in optical coherence tomography (OCT) was forced into a ring shape as the driving liquid in the hydrophobic chamber. By switching the segmented concentric control electrodes in steps, digital operation of the MEFI was successfully observed with clear aperture stops. The measured turnaround speed was 80mm/s, which is significantly higher than that for other comparable adaptive liquid irises. Due to a scalable aperture range with fast response, the concept of MEFI is expected to be widely applied in various optical systems that require high-quality imaging, as well as in real-time diagnostic OCT.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
    [CrossRef]
  3. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
    [CrossRef]
  4. M. Choi, S. Lee, J.-H. Chang, E. Lee, K.-D. Jung, and W. Kim, Opt. Express 21, 1567 (2013).
    [CrossRef]
  5. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, Proc. SPIE 8252, 82520O (2012).
    [CrossRef]
  6. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, Opt. Lett. 37, 4377 (2012).
    [CrossRef]
  7. J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
    [CrossRef]
  8. J.-H. Chang and J. J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).
  9. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010).
    [CrossRef]
  10. H. Ren and S.-T. Wu, Opt. Lett. 35, 3826 (2010).
    [CrossRef]
  11. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, Opt. Express 19, 15525 (2011).
    [CrossRef]
  12. P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
    [CrossRef]
  13. L. Li, C. Liu, and Q.-H. Wang, Opt. Lett. 37, 3306 (2012).
    [CrossRef]
  14. L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
    [CrossRef]
  15. L. Li, C. Liu, H. Ren, and Q.-H. Wang, Opt. Lett. 38, 2336 (2013).
    [CrossRef]

2013

2012

L. Li, C. Liu, and Q.-H. Wang, Opt. Lett. 37, 3306 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, Opt. Lett. 37, 4377 (2012).
[CrossRef]

J.-H. Chang and J. J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, Proc. SPIE 8252, 82520O (2012).
[CrossRef]

P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

2011

2010

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Chang, J.-H.

M. Choi, S. Lee, J.-H. Chang, E. Lee, K.-D. Jung, and W. Kim, Opt. Express 21, 1567 (2013).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, Proc. SPIE 8252, 82520O (2012).
[CrossRef]

J.-H. Chang and J. J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, Opt. Lett. 37, 4377 (2012).
[CrossRef]

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Choi, M.

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

Jung, K.-D.

Kim, W.

Lee, E.

Lee, S.

Li, L.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Liu, C.

Mugele, F.

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

Murade, C. U.

Oh, J. M.

Pak, J. J.

J.-H. Chang and J. J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Ren, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Tsai, C. G.

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

van den Ende, D.

Wang, Q. H.

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

Wang, Q.-H.

Wu, S.-T.

Yeh, J. A.

Zappe, H.

P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

J. Adhes. Sci. Technol.

J.-H. Chang and J. J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).

J. Microelectromech. Syst.

P. Müller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

Nat. Rev. Cancer

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, Nat. Rev. Cancer 12, 363 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, Proc. SPIE 8252, 82520O (2012).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef]

Sens. Actuators B

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematics of the fabricated MEFI: (a) top and (b) cross-sectional views. All solid surfaces in the chamber are hydrophobic.

Fig. 2.
Fig. 2.

Measured voltage-dependent contact angle of a sessile drop on the hydrophobic surface, in air ambient, of the MEFI. The solid blue line corresponds to a fit using the Lippmann–Young equation.

Fig. 3.
Fig. 3.

Calculated change in net pressure with aperture diameter for several combinations of contact angles in the surface channels.

Fig. 4.
Fig. 4.

Experimental results for fabricated MEFI with schematic cross sections: (a) initial state and controlled aperture size for (b) 4.2 mm, (c) 3.4 mm, (d) 2.6 mm, (e) 1.8 mm, and (f) 1.0 mm diameters.

Fig. 5.
Fig. 5.

Measured aperture diameter versus time at several voltages.

Tables (1)

Tables Icon

Table 1. Comparison of Adaptive Liquid Irises

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosθV=cosθ0+c2γV2,
Pnet=γ[(2cosθ1h1+1r1)(2cosθ2h2+1r2)],

Metrics