Abstract

We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of 3μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
    [CrossRef]
  3. M. Wojdyla, S. Raj, and D. Petrov, J. Biomed. Opt. 17, 097006 (2012).
    [CrossRef]
  4. J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
    [CrossRef]
  5. K. Taguchi, Kemia Kemi 523, 1070 (2012).
    [CrossRef]
  6. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, Opt. Express 14, 12510 (2006).
    [CrossRef]
  7. L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
    [CrossRef]
  8. F. Bragheri, P. Minzioni, C. Liberale, E. D. Fabrizio, and I. Cristiani, Opt. Express 16, 17647 (2008).
    [CrossRef]
  9. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
    [CrossRef]
  10. K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
    [CrossRef]
  11. L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).
  12. Y. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, J. Lightwave Technol. 30, 1487 (2012).
    [CrossRef]
  13. E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998).
    [CrossRef]
  14. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
    [CrossRef]
  15. P. M. P. Lanigan, I. Munro, E. J. Grace, D. R. Casey, J. Phillips, D. R. Klug, O. Ces, and M. A. A. Neil, Biomed. Opt. Express 3, 1609 (2012).
    [CrossRef]
  16. E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
    [CrossRef]
  17. A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, 1983), pp. 281–300.
  18. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  19. Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
    [CrossRef]
  20. P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
    [CrossRef]

2012

2008

F. Bragheri, P. Minzioni, C. Liberale, E. D. Fabrizio, and I. Cristiani, Opt. Express 16, 17647 (2008).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
[CrossRef]

L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).

2007

L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
[CrossRef]

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

2006

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, Opt. Express 14, 12510 (2006).
[CrossRef]

E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
[CrossRef]

2001

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

1998

E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

1995

P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
[CrossRef]

1987

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[CrossRef]

1986

1978

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

1976

Abedin, K. S.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Andersson, M.

E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef]

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

Axner, O.

E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
[CrossRef]

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
[CrossRef]

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef]

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

Bragheri, F.

Casey, D. R.

Ces, O.

Chu, S.

Chuang, Y. H.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

Cristiani, I.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
[CrossRef]

Dziedzic, J. M.

Fabrizio, E. D.

Fällman, E.

E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
[CrossRef]

Fernandez-Nieves, A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Freeman, R. R.

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

Grace, E. J.

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Guan, C. Y.

L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).

Guo, C. K.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
[CrossRef]

Huang, J. Y.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

Kerbage, C.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Klug, D. R.

Lanigan, P. M. P.

Liberale, C.

Liu, Z. H.

Y. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, J. Lightwave Technol. 30, 1487 (2012).
[CrossRef]

L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).

L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, Opt. Express 14, 12510 (2006).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, 1983), pp. 281–300.

Marcuse, D.

Minzioni, P.

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
[CrossRef]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
[CrossRef]

Munro, I.

Neil, M. A. A.

Pan, C. L.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

Pearson, D. B.

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

Petrov, D.

M. Wojdyla, S. Raj, and D. Petrov, J. Biomed. Opt. 17, 097006 (2012).
[CrossRef]

Phillips, J.

Raj, S.

M. Wojdyla, S. Raj, and D. Petrov, J. Biomed. Opt. 17, 097006 (2012).
[CrossRef]

Salathe, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
[CrossRef]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, 1983), pp. 281–300.

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Sun, K. G.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

Taguchi, K.

K. Taguchi, Kemia Kemi 523, 1070 (2012).
[CrossRef]

Wang, C. J.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

Weitz, D. A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Wojdyla, M.

M. Wojdyla, S. Raj, and D. Petrov, J. Biomed. Opt. 17, 097006 (2012).
[CrossRef]

Yang, J.

Y. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, J. Lightwave Technol. 30, 1487 (2012).
[CrossRef]

L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).

L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, Opt. Express 14, 12510 (2006).
[CrossRef]

Yuan, L. B.

Y. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, J. Lightwave Technol. 30, 1487 (2012).
[CrossRef]

L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, Opt. Express, 16, 4551 (2008).

L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, Opt. Express 14, 12510 (2006).
[CrossRef]

Zhang, Y.

Appl. Phys. Lett.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

L. B. Yuan, Z. H. Liu, and J. Yang, Appl. Phys. Lett. 91, 054101 (2007).
[CrossRef]

Biomed. Opt. Express

J. Biomed. Opt.

M. Wojdyla, S. Raj, and D. Petrov, J. Biomed. Opt. 17, 097006 (2012).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 054049 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

Kemia Kemi

K. Taguchi, Kemia Kemi 523, 1070 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys. Rev. Lett. 41, 1361 (1978).
[CrossRef]

Proc. SPIE

E. Fällman, M. Andersson, and O. Axner, Proc. SPIE 6088, 60881E (2006).
[CrossRef]

Rev. Sci. Instrum.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, Rev. Sci. Instrum. 69, 437 (1998).
[CrossRef]

E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Science

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[CrossRef]

Ultramicroscopy

P. Hoffmann, B. Dutoit, and R. P. Salathe, Ultramicroscopy 61, 165 (1995).
[CrossRef]

Other

A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, 1983), pp. 281–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Image of a yeast cell trapped at the position zf, where the power ratio of LP01 and LP11 mode beams is P01:P11=10. (b) Image of the yeast cell trapped at the position zc, where the power ratio of LP01 and LP11 mode beams is P01:P11=0.760.24.

Fig. 2.
Fig. 2.

Experimental setup schematic diagram of single-fiber tweezers with LP01 and LP11 mode beams. Here the “mode selector” is a fiber microbending modulator, whose resolution is 10 μm.

Fig. 3.
Fig. 3.

(a) Power measurement results of the LP01 and LP11 mode beams. Here “dt” is the displacement of the slat A in the mode selector. The left part of (a), where the abscissa is 0~2~4~6, represents pushing slat A near to slat B; the microbending radius increases during this process, and the loss of the LP11 mode beam responding increases. The right part of (a), where the abscissa is 6~4′~2′~0′, represents pulling slat A back, going away from slat B (the abscissa is labeled by “′”); the microbending radius decreases during this process, the loss of the LP11 mode beam responding decreases, and the total power increases to the initial magnitude. (b) Power proportion of LP01 and LP11 mode beams calculated from the measurement results. (c) Images of far-field light intensity distribution of LP01 and LP11 mode beams responding to different “dt.”

Fig. 4.
Fig. 4.

(a) Image of the fiber tapered tip fabricated after step 1. (b) Image of the final fiber tapered tip, fabricated after step 2, where 2R is the diameter of the fiber core. (c) Magnified image of the final fiber tapered tip, where r is the radius of the half-lens tip.

Fig. 5.
Fig. 5.

(a) Fluorescence image of the LP01 and LP11 beams output optical field using the dye Eosin Y with 532 nm light source illumination (no microbend loss loaded on the fiber). (b) Fluorescence image of the LP01 beam output optical field using the dye Eosin Y with 532 nm light source illumination (the max microbend loss loaded on the fiber).

Fig. 6.
Fig. 6.

(a) LP01 and LP11 mode beam optical field distribution images of the tapered fiber tip simulated by the beam propagating method (BeamPROP by RSoft Design Group). Simulation condition: the light source wavelength is 980 nm, and the fiber core diameter is 8.2 μm. The refractive indices of the fiber core and the surrounding medium (water) are 1.4676 and 1.33, respectively. (b) Image of far-field profile distribution of the LP01 mode beam. (c) Image of far-field profile distribution of the LP11 mode beam.

Fig. 7.
Fig. 7.

(a) Schematic diagram of simulation coordinate system, where d represents the distance between the fiber tip and the center of the microparticle. (b) Original partial magnification of (c) as labeled by the black circle with dashed lines. (c) Simulation results of resultant axial trapping forces with different power ratios of LP01 and LP11 mode beams, where P01 represents the power of the LP01 mode beam, and P11 represents the power of the LP11 mode beam.

Fig. 8.
Fig. 8.

(a) Simulation results of trapping force generated by the LP01 mode beam exerting on the microparticles with different sizes. (b) Simulation results of trapping force generated by the LP11 mode beam exerting on the microparticles with different sizes. (c) Relations between the microparticle position and the power proportion of the LP01 mode beam, where P is the normalized power of the LP01 beam (P01/(P01+P11)).

Metrics