Abstract

We have developed a numerical technique for performing physics-based simulations of the modulation transfer function (MTF) of infrared detector focal plane arrays. The finite-difference time-domain and finite element methods are employed to determine the electromagnetic and electrical response, respectively. We show how the total MTF can be decomposed to analyze the effect of lateral diffusion of charge carriers and present several methods for mitigation of such effects. We employ our numerical technique to analyze the MTF of a HgCdTe two-color bias-selectable infrared detector array.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
    [CrossRef]
  2. E. G. Stevens, IEEE Trans. Electron Devices 39, 2621 (1992).
    [CrossRef]
  3. D. T. Cheung, Infrared Phys. 21, 301 (1981).
    [CrossRef]
  4. D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
    [CrossRef]
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  6. C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).
    [CrossRef]
  7. B. Pinkie and E. Bellotti, “Numerical simulation of spatial and spectral crosstalk in two-color MWIR/LWIR HgCdTe infrared detector arrays,” J. Electron. Mater. (to be published).
  8. K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
    [CrossRef]
  9. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
    [CrossRef]
  10. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
    [CrossRef]
  11. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).
    [CrossRef]
  12. J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).
  13. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  14. S. K. Park, R. Schowengerdt, and M. A. Kaczynski, Appl. Opt. 23, 2572 (1984).
    [CrossRef]
  15. L. C. Ma and R. Mittra, in Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 1665.
  16. W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
    [CrossRef]
  17. J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
    [CrossRef]
  18. D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005).
    [CrossRef]
  19. J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).
    [CrossRef]
  20. J. Schuster and E. Bellotti, Opt. Express 21, 14712 (2013).
    [CrossRef]

2013

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Schuster and E. Bellotti, Opt. Express 21, 14712 (2013).
[CrossRef]

2012

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

2011

C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).
[CrossRef]

2009

A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

2008

D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
[CrossRef]

2006

E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).
[CrossRef]

2005

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005).
[CrossRef]

1992

E. G. Stevens, IEEE Trans. Electron Devices 39, 2621 (1992).
[CrossRef]

1987

D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
[CrossRef]

1984

1981

D. T. Cheung, Infrared Phys. 21, 301 (1981).
[CrossRef]

1966

K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Bellotti, E.

J. Schuster and E. Bellotti, Opt. Express 21, 14712 (2013).
[CrossRef]

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).
[CrossRef]

D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).
[CrossRef]

B. Pinkie and E. Bellotti, “Numerical simulation of spatial and spectral crosstalk in two-color MWIR/LWIR HgCdTe infrared detector arrays,” J. Electron. Mater. (to be published).

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).

Cheung, D. T.

D. T. Cheung, Infrared Phys. 21, 301 (1981).
[CrossRef]

D’Orsogna, D.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).
[CrossRef]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Gaskill, J.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).

Goetz, P.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Graham, R.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Hobbs, D. S.

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005).
[CrossRef]

Jensen, J.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Johnson, S. M.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Kaczynski, M. A.

Keasler, C.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

Keasler, C. A.

C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).
[CrossRef]

Kidron, I.

D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
[CrossRef]

King, D. F.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Levy, D.

D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
[CrossRef]

Ma, L. C.

L. C. Ma and R. Mittra, in Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 1665.

MacLeod, B. D.

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005).
[CrossRef]

Mears, C. L.

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

Mittra, R.

L. C. Ma and R. Mittra, in Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 1665.

Nosho, B.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Park, S. K.

Patten, E. A.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Pierce, G. K.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Pinkie, B.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

B. Pinkie and E. Bellotti, “Numerical simulation of spatial and spectral crosstalk in two-color MWIR/LWIR HgCdTe infrared detector arrays,” J. Electron. Mater. (to be published).

Radford, W.

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

Radford, W. A.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Roth, J.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Schacham, S. E.

D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
[CrossRef]

Schowengerdt, R.

Schuster, J.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Schuster and E. Bellotti, Opt. Express 21, 14712 (2013).
[CrossRef]

J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

Smith, E. P.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Smith, E. P. G.

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

Stevens, E. G.

E. G. Stevens, IEEE Trans. Electron Devices 39, 2621 (1992).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Tobin, S.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
[CrossRef]

Venzor, G.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Vodicka, J.

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

Wehner, J. G. A.

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

IEEE J. Quantum Electron.

E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

IEEE Trans. Electron Devices

E. G. Stevens, IEEE Trans. Electron Devices 39, 2621 (1992).
[CrossRef]

IEEE Trans. Electron. Devices

D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987).
[CrossRef]

Infrared Phys.

D. T. Cheung, Infrared Phys. 21, 301 (1981).
[CrossRef]

J. Appl. Phys.

A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

J. Electron. Mater.

C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).
[CrossRef]

D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).
[CrossRef]

J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012).
[CrossRef]

Opt. Express

Proc. SPIE

W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005).
[CrossRef]

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005).
[CrossRef]

Other

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).

L. C. Ma and R. Mittra, in Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 1665.

B. Pinkie and E. Bellotti, “Numerical simulation of spatial and spectral crosstalk in two-color MWIR/LWIR HgCdTe infrared detector arrays,” J. Electron. Mater. (to be published).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulated detector footprint MTFs for several different beam radii (open symbols) show excellent agreement with the analytical solution (solid line) of Eq. (4).

Fig. 2.
Fig. 2.

Schematic of the sequential bias-selectable two-color HgCdTe detector. The dashed blue line shows the profile of the PT structure present on the backside of the device, when applicable.

Fig. 3.
Fig. 3.

Simulated MTF in the MW IR (left, λ=2.5μm) and LW IR (right, λ=5.5μm) bands of a bias-selectable two-color detector. The total MTF in the MW band is severely limited by the lateral diffusion of charge carriers. In both cases, the degradation of the MTF due to optical scattering (MTFOC) is negligible and is not shown.

Fig. 4.
Fig. 4.

Simulated MTF of the MW band (λ=2.5μm) with and without cross talk mitigation features.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

MTF(f)=F{SS(x,r)},
MTFtotal=MTFGB×MTFD×MTFOC×MTFFP,
MTFGB(f)=F{exp(x2r2)}=exp(π2f2r2),
MTFFP(f)=F{rect(xp)}=sinc(fp).

Metrics