Abstract

We present a hybrid graphene–silicon waveguide, which consists of a lateral slot waveguide with three layers of graphene flakes inside. Through a theoretical analysis, an effective index variation for about 0.05 is found in the waveguide by applying a voltage on the graphene. We designed a Mach–Zehnder modulator based on this waveguide and demonstrated it can process signals nearly chirp-free. The calculation shows that the driving voltage is only 1 V even if the length of the arm is shortened to be 43.54 μm. An extinction up to 34.7 dB and a minimum chirp parameter of 0.006 are obtained. Its insertion loss is roughly 1.37dB. This modulator consumes low power and has a small footprint. It can potentially be ultrafast as well as CMOS compatible.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide

Xiang Yin, Tian Zhang, Lin Chen, and Xun Li
Opt. Lett. 40(8) 1733-1736 (2015)

Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide

Meiyong Fan, Huimin Yang, Pengfei Zheng, Guohua Hu, Binfeng Yun, and Yiping Cui
Opt. Express 25(18) 21619-21629 (2017)

Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler

Tian Zhang, Xiang Yin, Lin Chen, and Xun Li
Opt. Lett. 41(2) 356-359 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription