Abstract

A method for time-resolved tunable diode laser absorption spectroscopy (LAS) has been developed. In this Letter, we describe in detail a developed electronic module that controls the time resolution of the LAS system. The transistor–transistor logic signal triggering the plasma pulse is used for generation of two signals: the first one triggers fine tuning of the laser wavelength and the second one controls time-defined signal sampling from the absorption detector. The described method and electronic system enable investigation of the temporal evolution of the density and temperature of selected particles in technological plasma systems. The high-power impulse magnetron sputtering system with a period of 10 ms and a duty cycle of 1% has been used to verify this method. The temporal evolution of argon metastable density was measured in the active part of the pulse and in the afterglow. The resulting density of Ar* displays a double-peak structure with a first peak in the plasma “ON” phase and a second peak in the afterglow approximately 1 ms after the end of the pulse.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
    [CrossRef]
  2. H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
    [CrossRef]
  3. J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.
  4. M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
    [CrossRef]
  5. J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
    [CrossRef]
  6. V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
    [CrossRef]
  7. J. W. Bradley and T. Welzel, J. Phys. D 42, 093001 (2009).
    [CrossRef]
  8. R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
    [CrossRef]
  9. C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
    [CrossRef]
  10. J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

2013 (1)

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

2011 (1)

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

2009 (1)

J. W. Bradley and T. Welzel, J. Phys. D 42, 093001 (2009).
[CrossRef]

2008 (1)

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

2006 (1)

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

2005 (1)

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

2002 (1)

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

1996 (1)

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Ahn, C. H.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Beasley, M. R.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Behnke, J. F.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Borcia, G.

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

Bortz, M. L.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Bradley, J. W.

J. W. Bradley and T. Welzel, J. Phys. D 42, 093001 (2009).
[CrossRef]

Cada, M.

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

Cazan, R.

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

Chiper, A.

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

Davies, P. B.

J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.

Day, T.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

de Poucques, L.

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

Dinklage, A.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Do, H. T.

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

Fejer, M. M.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Franke, S.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Hammond, R. H.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Hippler, R.

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

Hubicka, Z.

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

Jastrabík, L.

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

Käning, M.

J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.

Lavrov, B. F.

J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.

Minea, T. M.

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

Olejnícek, J.

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

Popa, G.

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

Röpcke, J.

J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.

Scheibner, H.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Solyman, S.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Steffen, H.

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

Sushkov, V.

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

Vitelaru, C.

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

Wang, W.

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

Welzel, T.

J. W. Bradley and T. Welzel, J. Phys. D 42, 093001 (2009).
[CrossRef]

Wilke, C.

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Wolter, M.

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

W. Wang, M. M. Fejer, R. H. Hammond, M. R. Beasley, C. H. Ahn, M. L. Bortz, and T. Day, Appl. Phys. Lett. 68, 729 (1996).
[CrossRef]

J. Appl. Phys. (1)

C. Vitelaru, L. de Poucques, T. M. Minea, and G. Popa, J. Appl. Phys. 109, 053307 (2011).
[CrossRef]

J. Phys. D (2)

J. W. Bradley and T. Welzel, J. Phys. D 42, 093001 (2009).
[CrossRef]

M. Wolter, H. T. Do, H. Steffen, and R. Hippler, J. Phys. D 38, 2390 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Olejníček, H. T. Do, Z. Hubička, R. Hippler, and L. Jastrabík, Jpn. J. Appl. Phys. 45, 8090 (2006).
[CrossRef]

Plasma Source Sci. Technol. (2)

V. Sushkov, H. T. Do, M. Čada, Z. Hubička, and R. Hippler, Plasma Source Sci. Technol. 22, 015002 (2013).
[CrossRef]

R. Cazan, G. Borcia, A. Chiper, and G. Popa, Plasma Source Sci. Technol. 17, 035020 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, Rev. Sci. Instrum. 73, 378 (2002).
[CrossRef]

Other (2)

J. Röpcke, P. B. Davies, M. Käning, and B. F. Lavrov, Low Temperature Plasma Physics, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds. (Viley-VCH, 2000), p. 173.

J. Olejníček, H. T. Do, Z. Hubička, and R. Hippler, in 13th Annual Conference Proceedings on Technical Computing, (2005), 95–104.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Detail of the control and measuring unit (CMU).

Fig. 3.
Fig. 3.

AD signal as a function of relative laser frequency. The open points (open circle) represent real absorption measured behind the plasma chamber (for clarity, only every 15th data point is shown), the red line is the least-squares fit to the experimental data, the blue line is the etalon signal (ID) from the Fabry–Perot interferometer, and the green line represents sweeping RV. Top x axis corresponds to the laser wavelength.

Fig. 4.
Fig. 4.

Absorption signal for various times of HiPIMS discharge. For clarity, only every 20th data point is shown. The time scale begins at the starting edge of the voltage pulse. The length of the pulse was 100 μs. Top x axis corresponds to laser wavelength.

Fig. 5.
Fig. 5.

Time-resolved argon metastable density (solid square) and argon metastable temperature (solid triangle) over the whole period of the HiPIMS mode (T=10ms). Colored squares on the density curve correspond to absorption profiles of the same color in Fig. 4. The gray line in the background represents the current waveform measured by a digital oscilloscope.

Metrics