Abstract

Solving inverse problems requires multiple forward calculations of measured signals. We present a fast method combining graphic processing unit-accelerated Monte Carlo simulations of individual photons and a new perturbation scheme for a 300-fold speedup in comparison to conventional CPU-based approaches. The method allows rapid calculations of the diffuse reflectance and transmittance signals from a turbid sample of absorption coefficient μa, scattering coefficient μs, and anisotropy factor g based on the principle of correlated sampling. To demonstrate its strong utility, we have applied the method for determining the optical parameters of diluted intralipid samples with satisfactory results.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm

Cheng Chen, Jun Q. Lu, Huafeng Ding, Kenneth M. Jacobs, Yong Du, and Xin-Hua Hu
Opt. Express 14(16) 7420-7435 (2006)

GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues

Nunu Ren, Jimin Liang, Xiaochao Qu, Jianfeng Li, Bingjia Lu, and Jie Tian
Opt. Express 18(7) 6811-6823 (2010)

Next-generation acceleration and code optimization for light transport in turbid media using GPUs

Erik Alerstam, William Chun Yip Lo, Tianyi David Han, Jonathan Rose, Stefan Andersson-Engels, and Lothar Lilge
Biomed. Opt. Express 1(2) 658-675 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription