Abstract

Subwavelength antireflective micropyramid structures, designed by rigorous coupled-wave analysis and fabricated by precision micromachining, are used to enhance the terahertz (THz) radiation output of optical rectification in GaP crystal-based emitters. An average 16% increase in the THz radiation power emitted by a 3 mm GaP crystal is experimentally demonstrated using an antireflective micropyramid grating with a period of 60 μm and a base angle of 55.5°. Optimized pyramidal-frustum gratings are shown to operate as highly efficient antireflective structures within an ultrabroadband range of 0.5–5 THz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
    [CrossRef]
  2. M. Tonouchi, Nat. Photonics 1, 97 (2007).
    [CrossRef]
  3. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2008).
    [CrossRef]
  4. K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
  5. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
    [CrossRef]
  6. P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
    [CrossRef]
  7. X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).
  8. F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  10. F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).
  11. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
    [CrossRef]
  12. X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.
  13. E. B. Grann, M. G. Moharam, and D. A. Pommet, J. Opt. Soc. Am. A 12, 333 (1995).
    [CrossRef]

2013

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

2012

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

2011

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

2010

P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
[CrossRef]

2009

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

2008

2007

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

2002

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

1995

Bartal, B.

Bodrov, S. B.

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

Chai, L.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.

Chen, Y. H.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

Chen, Y. W.

P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
[CrossRef]

Fang, F. Z.

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

Fang, X.-H.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Han, P.

P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
[CrossRef]

Hebling, J.

Hoffmann, M. C.

Hu, M. L.

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Hu, M.-L.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Hu, X.

X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.

Hu, X. K.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Hu, X. T.

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

Ilyakov, I. E.

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

Li, J.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

Li, X.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.

Li, Y.

X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.

Li, Y. F.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Liu, B.-W.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Liu, F.

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Moharam, M. G.

Nelson, K. A.

Pommet, D. A.

Shishkin, B. V.

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

Song, Y.-J.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Stepanov, A. N.

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

Tonouchi, M.

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).

Wang, C.-Y.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Wang, Q. Y.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Wu, Y.-Z.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Xing, Q. R.

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Yeh, K.-L.

Zhang, G. X.

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

Zhang, X. D.

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

Zhang, X.-C.

P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
[CrossRef]

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Zheltikov, A. M.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Acta Phys. Sin.

X. K. Hu, J. Li, X. Li, Y. H. Chen, Y. F. Li, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 62, 060701 (2013).

F. Liu, X. K. Hu, Y. F. Li, Q. R. Xing, M. L. Hu, L. Chai, and Q. Y. Wang, Acta Phys. Sin. 61, 040703 (2012).

Appl. Phys. Lett.

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012).
[CrossRef]

CIRP Ann.-Manu. Technol.

F. Z. Fang, Y. H. Chen, X. D. Zhang, X. T. Hu, and G. X. Zhang, CIRP Ann.-Manu. Technol. 60, 527 (2011).

IEEE J. Sel. Top. Quantum Electron.

P. Han, Y. W. Chen, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 16, 338 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Laser Photon. Rev.

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).

Laser Phys. Lett.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).
[CrossRef]

Nat. Mater.

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Nat. Photonics

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Other

X. Li, X. Hu, Y. Li, and L. Chai, “A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating,” submitted to J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM photo, (b) enlarged view, (c) schematic, and (d) parameters of subwavelength antireflective MP grating fabricated on GaP crystals.

Fig. 2.
Fig. 2.

Experimental THz-TDS setup used to study the antireflection performance of MP gratings. QWP, quarter wave plate; WP, Wollaston prism; PD, photodiode.

Fig. 3.
Fig. 3.

Spectra of THz pulses (a) transmitted through and (b) generated from areas with and without the AR structures (Λ=60μm, θ=45° and 55.5°) on the exit surface of the GaP crystal.

Fig. 4.
Fig. 4.

THz output power as a function of pump power from a 3 mm GaP crystal generated from areas with and without AR gratings (Λ=60μm, θ=45° and 55.5°) on the exit surface.

Fig. 5.
Fig. 5.

Calculated power transmittances of optimized pyramidal-frustum gratings (inset) with Λ=15μm, h=75μm and two base angles, and the original pyramid gratings.

Metrics