Abstract

We have developed a compact integral three-dimensional (3D) imaging equipment that positions the lens array and image sensor in close proximity to each other. In the conventional scheme, a camera lens is used to project the elemental images generated by the lens array onto the image sensor. In contrast, the imaging equipment presented here combines the lens array and image sensor into one unit and makes no use of a camera lens. This scheme eliminates the resolution deterioration and distortion caused by the use of a camera lens and improves, in principle, the quality of the reconstructed 3D image. We captured objects with this imaging equipment and displayed the reconstructed 3D images using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed 3D images were found to have appropriate motion parallax.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Lippmann, J. de Phys. 7, 821 (1908).
    [CrossRef]
  2. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
    [CrossRef]
  3. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, Appl. Opt. 37, 2034 (1998).
    [CrossRef]
  4. Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).
  5. The Lytro camera, https://www.lytro.com/ .
  6. H. Matsumura, Opt. Quantum Electron. 7, 81 (1975).
    [CrossRef]

2010 (1)

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

1998 (1)

1975 (1)

H. Matsumura, Opt. Quantum Electron. 7, 81 (1975).
[CrossRef]

1908 (1)

M. G. Lippmann, J. de Phys. 7, 821 (1908).
[CrossRef]

Arai, J.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, Appl. Opt. 37, 2034 (1998).
[CrossRef]

Brédif, M.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Duval, G.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Furuya, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Haino, Y.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Hanrahan, P.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Horowitz, M.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Hoshino, H.

Kawakita, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Levoy, M.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Lippmann, M. G.

M. G. Lippmann, J. de Phys. 7, 821 (1908).
[CrossRef]

Matsumura, H.

H. Matsumura, Opt. Quantum Electron. 7, 81 (1975).
[CrossRef]

Ng, Y. R.

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

Okano, F.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, Appl. Opt. 37, 2034 (1998).
[CrossRef]

Okui, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Sato, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Yoshimura, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Yuyama, I.

Appl. Opt. (1)

J. de Phys. (1)

M. G. Lippmann, J. de Phys. 7, 821 (1908).
[CrossRef]

J. Disp. Tech. (1)

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, J. Disp. Tech. 6, 422 (2010).
[CrossRef]

Opt. Quantum Electron. (1)

H. Matsumura, Opt. Quantum Electron. 7, 81 (1975).
[CrossRef]

Other (2)

Y. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).

The Lytro camera, https://www.lytro.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Comparison of imaging equipment: (a) conventional imaging equipment and (b) proposed imaging equipment.

Fig. 2.
Fig. 2.

Relationship between objective-lens aperture and range of light necessary to generate elemental images. (a) ΩΩ0 and (b) Ω0Ω.

Fig. 3.
Fig. 3.

Relationship between z2 (distance from objective lens to lens array) and objective-lens aperture Ω0 for which no elemental images are deficient.

Fig. 4.
Fig. 4.

Change in size of elemental images for different objective-lens apertures. (a) Ω=113, 130mmΩ0; and (b) Ω0Ω=60mm.

Fig. 5.
Fig. 5.

Spreading of light output from lens array.

Fig. 6.
Fig. 6.

Relationship between gap (g) between the light-emitting surface of the lens array and the image sensor and overlapping-light area (w).

Fig. 7.
Fig. 7.

Change in elemental-image overlapping for different gaps between the light-emitting surface of the lens array and the image sensor. (a) g=0mm and (b) g=0.5mm.

Fig. 8.
Fig. 8.

Schematic diagram of an experimental setup.

Fig. 9.
Fig. 9.

(a) Elemental images (magnified portion) and (b) 3D image.

Fig. 10.
Fig. 10.

Differences in 3D images (magnified portions) according to viewpoint. (a) Upper viewpoint, (b) lower viewpoint, (c) left viewpoint, and (d) right viewpoint.

Tables (3)

Tables Icon

Table 1. Specifications of Proposed Imaging Equipment

Tables Icon

Table 2. Specifications of GRIN Lens

Tables Icon

Table 3. Specifications of Display Equipment

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ=2sin1(n0AR),
Ω0=D+2z2·tan(Φ/2),
w=R[1+[g2/{R2·[1/tan(Φ/2)]2}]1].

Metrics