Abstract

Speckle contrast based optical coherence angiography (OCA) and optical coherence Doppler tomography (ODT) have been applied to image cerebral blood flow previously. However, the contrast mechanisms of these two methods are not fully studied. Here, we present both flow phantom and in vivo animal experiments using ultrahigh-resolution OCA (μOCA) and ODT (μODT) to investigate the flow sensitivity differences between these two methods. Our results show that the high sensitivity of μOCA for visualizing minute vasculature (e.g., slow capillary beds) is due to the enhancement by random Brownian motion of scatterers (e.g., red and white blood cells) within the vessels; whereas, μODT permits detection of directional flow below the Brownian motion regime (e.g., laser-induced microischemia) and is, therefore, more suitable for brain functional imaging.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, Opt. Express 15, 4083 (2007).
    [CrossRef]
  2. L. Yu and Z. Chen, J. Biomed. Opt. 15, 016029 (2010).
    [CrossRef]
  3. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, Opt. Lett. 35, 43 (2010).
    [CrossRef]
  4. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, Opt. Lett. 33, 1530 (2008).
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  6. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, Opt. Express 16, 6008 (2008).
    [CrossRef]
  7. Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
    [CrossRef]
  8. Y. K. Tao, A. M. Davis, and J. A. Izatt, Opt. Express 16, 12350 (2008).
    [CrossRef]
  9. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, Opt. Express 19, 1271 (2011).
    [CrossRef]
  10. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, Opt. Express 19, 1217 (2011).
    [CrossRef]
  11. Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
    [CrossRef]
  12. H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
    [CrossRef]

2011

2010

2009

Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
[CrossRef]

Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
[CrossRef]

2008

2007

2000

Bajraszewski, T.

Barry, S.

Boas, D. A.

Bonesi, M.

Cable, A.

Cable, A. E.

Chen, B.

Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
[CrossRef]

Chen, Z.

Davis, A. M.

de Boer, J. F.

Du, C.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
[CrossRef]

Götzinger, E.

Gruber, A.

Hanson, S. R.

Hitzenberger, C. K.

Hurst, S.

Izatt, J. A.

Jacques, S. L.

Jaillon, F.

Jiang, J.

Jiang, J. Y.

Khurana, M.

Kowalczyk, A.

Leitgeb, R. A.

Leung, M. K. K.

Luo, Z.

Ma, Z.

Makita, S.

Mariampillai, A.

Miura, M.

Moriyama, E. H.

Munce, N. R.

Nelson, J. S.

Pan, Y.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
[CrossRef]

Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
[CrossRef]

Park, K.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Pircher, M.

Radhakrishnan, H.

Ren, H.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
[CrossRef]

Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
[CrossRef]

Saxer, C.

Srinivasan, V. J.

Standish, B. A.

Szkulmowska, A.

Szkulmowski, M.

Tao, Y. K.

Torzicky, T.

Vitkin, I. A.

Volkow, N.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Wang, R. K.

Wilson, B. C.

Wojtkowski, M.

Wu, W.

Xiang, S.

Yamanari, M.

Yaseen, M. A.

Yasuno, Y.

Yu, L.

L. Yu and Z. Chen, J. Biomed. Opt. 15, 016029 (2010).
[CrossRef]

Yuan, Z.

H. Ren, C. Du, Z. Yuan, K. Park, N. Volkow, and Y. Pan, Mol. Psychiatry doi:10.1038/mp.2011.160 (2011).
[CrossRef]

Z. Yuan, B. Chen, H. Ren, and Y. Pan, J. Biomed. Opt. 14, 050502 (2009).
[CrossRef]

Z. Yuan, Z. Luo, H. Ren, C. Du, and Y. Pan, Opt. Express 17, 3951 (2009).
[CrossRef]

Zhao, Y.

Zotter, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Comparative results of μOCA and μODT for bi-directional flows in a translucent ϕ280μm capillary tube at the pump rate of vp=0, 23.6 and 47.2μm/s. While the nondirectional flow imaged by μOCA was offset by Brownian motion and only exhibited minor increase with vp, the directional flow imaged by μODT varied linearly with vp.

Fig. 2.
Fig. 2.

Quantitative analyses of the flow-rate changes of directional flow by μODT and non-directional flow by μOCA with the pump rate vp. μOCA provided high sensitivity for detecting vasculature of minute slow flows due to the enhancement by random Brownian motion (ΔσOCA5k counts), μODT was able to detect directional flow velocity at ultrahigh sensitivity of vODT5μm/s in flow-tissue phantom.

Fig. 3.
Fig. 3.

Comparative μOCA (upper panels) and μODT (lower panels) images of mouse cortical brain in vivo during (a), (b) baseline, (c), (d) after first and (e), (f) second laser coagulations that induced microischemia. The locations of laser disruptions are marked with green dots. The dashed green circles highlight the spreading of CBF showdowns due to laser disruptions of two arterioles. Apparently, because of offset by Brownian motion, the areas of vasoconstriction (i.e., CBF shutdown) in μOCA were smaller (underestimated) than those in μODT. Except at the coagulation spots, the disrupted vessels (both up- and down-streams) remain visible (although dimmer) due to Brownian motion.

Metrics