Abstract

We experimentally demonstrate series of identical two, three, and five coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators formed by periodic nanoscale variation of the optical fiber radius. These microresonators are fabricated with a 100 μm period along an 18 μm radius optical fiber. The axial FWHM of these microresonators is 80 μm and their Q-factor exceeds 107. In addition, we demonstrate a SNAP microresonator with the axial FWHM as small as 30 μm and the axial FWHM of the fundamental mode as small as 10 μm. These results may potentially enable the dense integration of record low loss coupled photonic microdevices on the optical fiber platform.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.
  2. M. Sumetsky and J. M. Fini, Opt. Express 19, 26470 (2011).
    [CrossRef]
  3. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, Opt. Lett. 36, 4824 (2011).
    [CrossRef]
  4. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
    [CrossRef]
  5. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
    [CrossRef]
  6. M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
    [CrossRef]
  7. A. B. Matsko, A. A. Savchenkov, and L. Maleki, Opt. Lett. 30, 3066 (2005).
    [CrossRef]
  8. M. Sumetsky, Opt. Express 13, 6354 (2005).
    [CrossRef]
  9. M. Sumetsky, Opt. Lett. 29, 8 (2004).
    [CrossRef]
  10. J. W. Fleming, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.
  11. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
    [CrossRef]
  12. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]
  13. M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
    [CrossRef]
  14. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
  15. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef]
  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics(Pergamon, 1977).

2011 (2)

2010 (4)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
[CrossRef]

2009 (1)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

2005 (2)

2004 (2)

M. Sumetsky, Opt. Lett. 29, 8 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1996 (1)

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

DiGiovanni, D. J.

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, Opt. Lett. 36, 4824 (2011).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Dulashko, Y.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Fini, J. M.

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

J. W. Fleming, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.

Gorodetsky, M. L.

Ilchenko, V. S.

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics(Pergamon, 1977).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics(Pergamon, 1977).

Liu, X.

Maleki, L.

Matsko, A. B.

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Monberg, E. M.

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, Opt. Lett. 36, 4824 (2011).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Notomi, M.

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Savchenkov, A. A.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Sumetsky, M.

Taunay, T. F.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Yablon, A. D.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron 16, 33 (2010).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).

Rep. Prog. Phys. (1)

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Other (3)

M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.

J. W. Fleming, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics(Pergamon, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Illustration of coupled SNAP microresonators excited by an MF attached to a SNAP fiber. (b) Characterization of an individual microresonator. (c), (d), and (e) Characterization of two, three, and five coupled microresonators, respectively. In Figs. (b), (c), (d), and (e), multiple plots and shrunk along the vertical axis are the resonance spectra measured along the test fiber at points spaced by 10 μm. Bold curves represent the radius variation of microresonators.

Fig. 2.
Fig. 2.

Characterization of a double microresonator (double quantum well) structure fabricated by a single oversaturated beam exposure (the definition of plots is similar to Fig. 1).

Fig. 3.
Fig. 3.

Characterization of the fiber radius variation introduced by two oversaturated beam exposures (the definition of plots is similar to Fig. 1). The central microresonator (quantum well) belongs to the continuous spectrum of the SNAP fiber. The side quantum wells remain in the discrete spectrum (darken). Bold wavy curves illustrate the field amplitude variation of the modes in the central microresonator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ=(2πnf)1λr2(r0Rw)1/2exp[2π2nfΔλλr2(r0Rb)1/2].

Metrics