Abstract

We demonstrate a Q-switched fiber laser system emitting sub-60 ns pulses with 26 mJ pulse energy and near-diffraction-limited beam quality (M2<1.3). In combination with a repetition rate of 5 kHz, a corresponding average output power of 130 W is achieved. This record performance is enabled by a large-pitch fiber with a core diameter of 135 µm. This fiber allows for effective single-mode operation with mode field diameters larger than 90 µm even at average output powers exceeding 100 W.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  2. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, Opt. Lett. 32, 1551 (2007).
    [CrossRef]
  3. C. D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006).
    [CrossRef]
  4. M. Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
    [CrossRef]
  5. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 689 (2011).
    [CrossRef]
  6. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 255 (2011).
    [CrossRef]
  7. J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
    [CrossRef]
  8. W. W. Rigrod, J. Appl. Phys. 34, 2602 (1963).
    [CrossRef]
  9. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 13578 (2011).
    [CrossRef]
  10. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express20, 3997 (2012).
    [CrossRef]

2012 (1)

2011 (3)

2010 (1)

2009 (1)

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

2007 (1)

2006 (1)

C. D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

2005 (1)

1963 (1)

W. W. Rigrod, J. Appl. Phys. 34, 2602 (1963).
[CrossRef]

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

Carstens, H.

Chang, Y.-C.

Changkakoti, R.

Cheng, M. Y.

Clarkson, W. A.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

Eidam, T.

Ermeneux, S.

Galvanauskas, A.

Gatchell, P.

Hädrich, S.

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 255 (2011).
[CrossRef]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

Jansen, F.

Jauregui, C.

Liem, A.

Limpert, J.

Linke, S.

Mamidipudi, P.

Misas, C. J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

Nilsson, J.

Otto, H.-J.

Rademaker, K.

Richardson, D. J.

Rigrod, W. W.

W. W. Rigrod, J. Appl. Phys. 34, 2602 (1963).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

Röser, F.

Rothhardt, J.

Salin, F.

Schimpf, D. N.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

Schmidt, O.

Schreiber, T.

Seise, E.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 15, 159 (2009).
[CrossRef]

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Yvernault, P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microscope images. (a) Step index fiber with 6 µm core. (b) Rod-type PCF with 85 µm core. (c) LPF with 135 µm core and 425 µm air–clad diameter (all set to the same scale).

Fig. 2.
Fig. 2.

Schematic setup of the Q-switched fiber laser system. The oscillator comprises an output coupling mirror (OC, R=20%), an acousto-optic modulator (AOM), and a dielectric grating.

Fig. 3.
Fig. 3.

Slope of the main amplifier. The pulse energy was measured including the whole air–clad region (marked in white). Two beam profiles are depicted to demonstrate the fundamental mode deformation induced by avoided crossings at low output powers and the improved beam quality for higher output powers.

Fig. 4.
Fig. 4.

Beam profile at maximum extracted output pulse energy of 28.5 mJ. 26 mJ of this pulse energy are confined in the central core region. The air–clad border is marked in white.

Fig. 5.
Fig. 5.

Measured spectrum for different output pulse energies. The amount of ASE rises with the pulse energy, but even at the highest pulse energies, the ratio of spectrally integrated ASE to pulse average power remains below 1%.

Fig. 6.
Fig. 6.

Oscilloscope traces of the pulse shape of the oscillator and the output pulse at highest pulse energy. Both pulses are overlapped to illustrate the small beam deformations and increase of pulse duration from 40ns to 55ns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Eextr=(1lnGlnG0)·Eavail.

Metrics