Abstract

Although femtosecond microjoule Yb-fiber systems are attractive because of a straightforward power scalability, they inherently suffer from a lowered pulse fidelity as a result of complex dispersion and nonlinearity management. Here, we present an integrated Yb-fiber system delivering high-fidelity microjoule pulses compressible down to 160 fs. The system uses a dispersion compensating fiber stretcher that is specially designed to match the dispersion of a 1480lines/mm grating compressor. Performance analysis suggests the further possibility of scaling the pulse energy to tens of microjoules without pulse quality deterioration using this dispersion management scheme.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B. Chichkov, and A. Tünnermann, Opt. Express 7, 41 (2000).
    [CrossRef]
  2. L. Shah, M. Fermann, J. Dawson, and C. Barty, Opt. Express 14, 12546 (2006).
    [CrossRef]
  3. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
    [CrossRef]
  4. O. Mücke, D. Sidorov, P. Dombi, A. Pugzlys, A. Baltuska, S. Alisauskas, V. Smilgevicius, J. Pocius, L. Giniunas, R. Danielius, and N. Forget, Opt. Lett. 34, 118 (2009).
    [CrossRef]
  5. A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
    [CrossRef]
  6. F. Röser, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, J. Limpert, and A. Tünnermann, Opt. Lett. 32, 2230 (2007).
    [CrossRef]
  7. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. Schimpf, J. Limpert, and A. Tünnermann, Opt. Lett. 32, 3495 (2007).
    [CrossRef]
  8. A. Shirakawa, M. Tanisho, and K. Ueda, Opt. Express 14, 12039 (2006).
    [CrossRef]
  9. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, Opt. Lett. 35, 3015 (2010).
    [CrossRef]
  10. L. Kuznetsova and F. Wise, Opt. Lett. 32, 2671 (2007).
    [CrossRef]
  11. H. Kalaycioglu, B. Oktem, C. Senel, P. Paltani, and F. Ilday, Opt. Lett. 35, 959 (2010).
    [CrossRef]
  12. A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
    [CrossRef]
  13. L. Grüner-Nielsen, D. Jakobsen, K. Jespersen, and B. Palsdottir, Opt. Express 18, 3768 (2010).
    [CrossRef]
  14. A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
    [CrossRef]

2011

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

2010

2009

2008

R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

2007

2006

2000

1999

A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Adams, S.

Alisauskas, S.

Baltuska, A.

Baltuška, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Barty, C.

Chichkov, B.

Danielius, R.

Dawson, J.

Dombi, P.

Egbert, A.

Eidam, T.

Fallnich, C.

Fermann, M.

Fermann, M. E.

Fernández, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
[CrossRef]

Forget, N.

Galvanauskas, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
[CrossRef]

Gattass, R.

R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Giniunas, L.

Grüner-Nielsen, L.

Hartl, I.

Holzwarth, R.

Ilday, F.

Jakobsen, D.

Jespersen, K.

Kalaycioglu, H.

Kane, S.

Korte, F.

Kuznetsova, L.

Liao, K.-H.

Limpert, J.

Liu, C.-H.

Marcinkevicius, A.

Mazur, E.

R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Mücke, O.

Nolte, S.

Oktem, B.

Ortaç, B.

Ostendorf, A.

Palsdottir, B.

Paltani, P.

Pocius, J.

Pshenichnikov, M. S.

A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Pugzlys, A.

Rademaker, K.

Röser, F.

Rothhardt, J.

Ruehl, A.

Ruske, J.-P.

Schimpf, D.

Schmidt, O.

Senel, C.

Shah, L.

Shirakawa, A.

Sidorov, D.

Sidorov-Biryukov, D.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
[CrossRef]

Smilgevicius, V.

Tanisho, M.

Tünnermann, A.

Ueda, K.

Verhoef, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
[CrossRef]

Wiersma, D. A.

A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Will, M.

Wise, F.

Zhu, L.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Baltuska, K.-H. Liao, C.-H. Liu, A. Galvanauskas, S. Kane, R. Holzwarth, and F. Ilday, Opt. Lett. 34, 2799 (2009).
[CrossRef]

IEEE J. Quantum Electron.

A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Laser Phys.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuška, Laser Phys. 21, 1329 (2011).
[CrossRef]

Nat. Photon.

R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental layout of the monolithic ytterbium doped fiber amplifier (YDFA) with the dispersion compensating fiber (DCF) stretcher. On the right, the far-field mode profile of the YDFA output is shown. AOM, acousto-optic modulator; LD, pigtailed laser diode; PM-LMA, polarization maintaining large mode area (fiber); PM-SMF, polarization maintaining single mode fiber; VS, variable slit.

Fig. 2.
Fig. 2.

SHG FROG characterization of the compression of the stretched seed pulses: (a) measured and reconstructed spectra together with the spectral phase (the spectrum is narrowed down in the compressor to match the spectral width of the amplified pulses), (b) temporal pulse profile.

Fig. 3.
Fig. 3.

SHG FROG characterization of the monolithic YDFA output without spectral filtering in the compressor: (a) measured and reconstructed spectra together with the spectral phase, (b) temporal pulse profile.

Fig. 4.
Fig. 4.

SHG FROG characterization of the monolithic YDFA output with the short wavelength edge of the spectrum filtered out in the compressor: (a) measured and (b) reconstructed SHG FROG traces; (c) measured and reconstructed spectra together with the spectral phase; (d) temporal pulse profile.

Fig. 5.
Fig. 5.

Results of numerical simulations of the system. (a) Dispersion of the main components of the system. DCF stretcher (gray), PM-SMF (prestretcher and preamplifiers, blue), total before the compressor (black), and grating compressor (×1, red). (b) Temporal pulse envelope before the compressor (black) and after the stretcher (blue). (c) Seed (blue) and amplified pulse spectrum (black) and group delay before the compressor (black dashes, simulations; solid red, obtained by combining the measured phase after compression with the calculated compressor phase).

Metrics