Abstract

We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber and does not require any advanced postprocessing of the fiber. Strain sensitivity of 0.23pm/με is achieved experimentally and numerical simulations reveal that for the present fiber the sensitivity can be increased to 4.46pm/με by optimizing the pump wavelength and power.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Rindorf and O. Bang, J. Opt. Soc. Am. B 25, 310 (2008).
    [CrossRef]
  2. Z. Tian and S. S.-H Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
    [CrossRef]
  3. X. Dong, H. Y. Tam, and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  4. S. Pevec and D. Donlagic, Opt. Express 19, 15641 (2011).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  6. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, Opt. Express 16, 20834 (2008).
    [CrossRef]
  7. M. H. Frosz, T. Sørensen, and O. Bang, J. Opt. Soc. Am. B 23, 1692 (2006).
    [CrossRef]
  8. M. H. Frosz, A. Stefani, and O. Bang, Opt. Express 19, 10471 (2011).
    [CrossRef]
  9. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, J. Opt. Soc. Am. B 20, 2329 (2003).
    [CrossRef]
  10. A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
    [CrossRef]
  11. L. Yuan, Appl. Opt. 36, 6246 (1997).
    [CrossRef]
  12. N. F. Borelli and R. A. Miller, Appl. Opt. 7, 745 (1968).
    [CrossRef]

2011 (2)

2009 (1)

Z. Tian and S. S.-H Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

2008 (2)

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

2006 (1)

2003 (1)

1997 (1)

1988 (1)

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

1968 (1)

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Bang, O.

Bertholds, A.

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

Bjarklev, A.

Borelli, N. F.

Dandliker, R.

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Donlagic, D.

Frosz, M. H.

Heuck, M.

Miller, R. A.

Nikolov, N. I.

Ott, J. R.

Pevec, S.

Rasmussen, P. D.

Rindorf, L.

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Sørensen, T.

Stefani, A.

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tian, Z.

Z. Tian and S. S.-H Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Yam, S. S.-H

Z. Tian and S. S.-H Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Yuan, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated dispersion of the unstrained (0 µε, solid) and strained (4000 µε, dashed) MOF. Insets: fiber cross-section and experimental FWM spectra for P0=575W with strain increasing from 0 to 4000 µε along the arrow.

Fig. 2.
Fig. 2.

Sketch of the experimental setup.

Fig. 3.
Fig. 3.

FWM peaks versus pump peak power. Inset: measured spectra with power increasing along the arrow.

Fig. 4.
Fig. 4.

(a) Measured and simulated FWM peaks versus strain. (b) Zoom on Stokes peak for the simulations. Parameter Sets 1–3 are given in Table 1. Sets 1a-b are explained in the text.

Fig. 5.
Fig. 5.

Sensitivity versus pump wavelength for different pump peak powers. Vertical line marks λZDW=1027.5nm.

Tables (1)

Tables Icon

Table 1. Strain-Optic Coefficients p11 and p12, Poisson’s Ratio σ, and Measurement Wavelength λ

Metrics