Abstract

Recent developments of optical-resolution photoacoustic microscopy (OR-PAM) have improved its spatial resolution and imaging speed. However, the penetration depth of OR-PAM is still limited to 1mm in tissue, owing to the strong tissue scattering. Here, we have developed double-illumination PAM (DI-PAM), which illuminates the sample from both top and bottom sides simultaneously. Through phantom and in vivo experiments, we have demonstrated for thin targets that DI-PAM has a penetration depth of 2mm in tissue at 532 nm and a focal zone of 260 μm, both significant improvements over traditional reflection or transmission-mode OR-PAM.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao and L. V. Wang, Contrast Media Mol. Imaging 6, 332 (2011).
    [CrossRef]
  2. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef]
  3. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, Opt. Lett. 34, 1771 (2009).
    [CrossRef]
  4. P. Hajireza, W. Shi, and R. J. Zemp, Opt. Lett. 36, 4107 (2011).
    [CrossRef]
  5. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
    [CrossRef]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef]
  7. C. Zhang, K. Maslov, and L. V. Wang, Opt. Lett. 35, 3195 (2010).
    [CrossRef]
  8. L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, Opt. Lett. 36, 139 (2011).
    [CrossRef]

2011 (4)

J. Yao and L. V. Wang, Contrast Media Mol. Imaging 6, 332 (2011).
[CrossRef]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, Opt. Lett. 36, 139 (2011).
[CrossRef]

P. Hajireza, W. Shi, and R. J. Zemp, Opt. Lett. 36, 4107 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Hajireza, P.

Hu, S.

Jiao, S. L.

Maslov, K.

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Puliafito, C. A.

Rao, B.

Shi, W.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Wang, L.

Wang, L. H. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Wang, L. V.

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Xie, Z. X.

Yao, J.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

J. Yao and L. V. Wang, Contrast Media Mol. Imaging 6, 332 (2011).
[CrossRef]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, Opt. Lett. 36, 139 (2011).
[CrossRef]

Zemp, R. J.

Zhang, C.

Zhang, H. F.

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Contrast Media Mol. Imaging (1)

J. Yao and L. V. Wang, Contrast Media Mol. Imaging 6, 332 (2011).
[CrossRef]

J. Biomed. Opt. (1)

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of DI-PAM. d1,2; Rayleigh range. ND, neutral density filter; BS, beam splitter; ConL, condenser lens; PH, pinhole; M, mirror; OL, objective lens; CorL, correction lens; RAP, right-angle prism; SOL, silicone oil layer; RhP, rhomboid prism; UT, ultrasonic transducer; WT, water tank; SH, sample holder; MS, motor scanner; EP, eyepiece; PD, photodiode.

Fig. 2.
Fig. 2.

System characterization of DI-PAM. (a), (b) Lateral resolution as a function of the axial position relative to the starting depth of data acquisition, under top, bottom, and double illuminations, respectively. Solid curves: theoretical fitting. (c) Side-view DI-PAM images of the human hair inside the chicken tissue under three illuminations. Scale bar: 200 µm. (d) Volumetric rendering of the human hair imaged by DI-PAM.

Fig. 3.
Fig. 3.

DI-PAM of mouse ear in vivo. (a) Top-view depth-encoded DI-PAM images of the right ear of a nude mouse bearing a U87 glioblastoma tumor, under top (TI), bottom (BI), and double (DI) illuminations, respectively. z is coded in colors. Scale bar: 500 μm. (b) Side-view DI-PAM images under three illuminations. CHb, total hemoglobin concentration. Scale bar: 500 μm. (c) Photograph of the mouse ear. The imaged area is indicated by the blue dashed box. Scale bar: 2 mm. (d) Histology image of hematoxylin and eosin (H&E) stained tissue slice across the mouse ear. AC; auricular cartilage. Arrowheads: blood vessels. Scale bar: 100 μm.

Fig. 4.
Fig. 4.

DI-PAM of the small intestine of a C57BL/6 mouse in vivo. (a) Top-view depth-encoded DI-PAM image of the small intestine under double illumination. Scale bar: 500 μm. (b) Side-view DI-PAM image of the region indicated by the dashed box in (a). CHb, total hemoglobin concentration. Scale bar: 250 μm. (c) Close-up of the small region indicated by the dashed box in (b). The intestinal villi are indicated by the arrowheads. Scale bar: 100 μm. (d) Volumetric rendering of the small intestine imaged by DI-PAM. (e) Photograph of the small intestine after surgical exposure. Scale bar: 1 mm. (f) Histology image of H&E stained cross section of the small intestine. Arrowheads: blood vessels. Scale bar: 200 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w(z)=w02+[λ(zz0)πw0]2,

Metrics