Abstract

A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that when T800nm, over 90% of the laser output power couples to the PhC slab modes, suggesting a new route toward an efficient in-plane laser for photonic integrated circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, J. Vučkovič, and A. Scherer, J. Opt. Soc. Am. B 16, 275 (1999).
    [CrossRef]
  2. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  3. K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
    [CrossRef]
  4. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
    [CrossRef]
  5. Qtot is defined by the decay rate of the total electromagnetic energy stored in the cavity such that U(t)=U(0)exp[−ωt/Qtot]. Then, the total radiation power (∼1/Qtot) can be decomposed into power radiated into the PhC slab (∼1/Qhorz) and power radiated in the out-of plane direction (∼1/Qvert); therefore, 1/Qtot=1/Qhorz+1/Qvert.
  6. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, Opt. Express 16, 448 (2008).
    [CrossRef]
  7. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
    [CrossRef]
  8. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  9. S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
    [CrossRef]
  10. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  11. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
    [CrossRef]
  12. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  13. M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, Opt. Lett. 30, 552 (2005).
    [CrossRef]
  14. S.-H. Kim, J. Huang, and A. Scherer, “From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers,” http://arxiv.org/abs/1109.0103 (2011).

2008

2006

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
[CrossRef]

2005

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, Opt. Lett. 30, 552 (2005).
[CrossRef]

2004

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

2003

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

1999

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

O. Painter, J. Vučkovič, and A. Scherer, J. Opt. Soc. Am. B 16, 275 (1999).
[CrossRef]

Akahane, Y.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

Arakawa, Y.

Asano, T.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Fink, Y.

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Ibanescu, M.

Iga, K.

K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
[CrossRef]

Iwamoto, S.

Joannopoulos, J. D.

M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, Opt. Lett. 30, 552 (2005).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, Opt. Lett. 30, 552 (2005).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Kim, G.-H.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kim, S.-B.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kim, S.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kumagai, N.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Lee, Y.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Noda, S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

Nomura, M.

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Painter, O.

Park, H.-G.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Roundy, D.

Ryu, H.-Y.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Scherer, A.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Song, B.-S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

Tandaechanurat, A.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Vuckovic, J.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Appl. Phys. Lett.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys. Lett. 82, 1661 (2003).
[CrossRef]

J. Appl. Phys.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, J. Appl. Phys. 95, 411 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Other

S.-H. Kim, J. Huang, and A. Scherer, “From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers,” http://arxiv.org/abs/1109.0103 (2011).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Qtot is defined by the decay rate of the total electromagnetic energy stored in the cavity such that U(t)=U(0)exp[−ωt/Qtot]. Then, the total radiation power (∼1/Qtot) can be decomposed into power radiated into the PhC slab (∼1/Qhorz) and power radiated in the out-of plane direction (∼1/Qvert); therefore, 1/Qtot=1/Qhorz+1/Qvert.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Design of the modified dipole cavity, (b), (c) FDTD simulations for the dipole mode in a PhC slab with T=2,000nm: (b) top-down view of the electric-field intensity (|E|2) profile and (c) cross-sectional views of |E|2 of the fundamental, first-order, and second-order slab modes.

Fig. 2.
Fig. 2.

Q of the fundamental dipole mode as a function of slab thickness, where we fix the xy simulation domain size to be 16a×16a.

Fig. 3.
Fig. 3.

(a) Waveguide dispersion along the z direction for the dipole mode. The normalized frequencies of the three dipole resonant modes shown in Fig. 1(c) are overlaid on the dispersion curve. (b) Group velocity (Vg) and waveguide propagation loss coefficient, α, simulated by FDTD. Vg and α are normalized by c (speed of light) and 2π/a, respectively.

Fig. 4.
Fig. 4.

(a)–(c) SEM images of PhC dipole lasers formed in a 606 nm InGaAsP slab. (a) Our dry-etching capability enables very deep (>3μm) and vertical etching; (b) a tilted image taken after selective wet-chemical etching; (c) a top view of the fabricated laser device. (d) Characteristics of the laser device.

Tables (1)

Tables Icon

Table 1. Optical Properties of the Higher-Order Slab Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1Qtot=Vgω[α+1Tlog(1r02)].

Metrics