Abstract

A simple design paradigm for making broadband ultrathin plasmonic absorbers is introduced. The absorber’s unit cell is composed of subunits of various sizes, resulting in nearly 100% absorbance at multiple adjacent frequencies and high absorbance over a broad frequency range. A simple theoretical model for designing broadband absorbers is presented. It uses a single-resonance model to describe the optical response of each subunit and employs the series circuit model to predict the overall response. Validity of the circuit model relies on short propagation lengths of the surface plasmons.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband metamaterial absorber based on coupling resistive frequency selective surface

LiangKui Sun, HaiFeng Cheng, YongJiang Zhou, and Jun Wang
Opt. Express 20(4) 4675-4680 (2012)

Theoretical analysis and design of a near-infrared broadband absorber based on EC model

Qing Zhang, Lihua Bai, Zhengyuan Bai, Pidong Hu, and Chengpu Liu
Opt. Express 23(7) 8910-8917 (2015)

Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates

Yongqiang Pang, Haifeng Cheng, Yongjiang Zhou, Zenggnag Li, and Jun Wang
Opt. Express 20(11) 12515-12520 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription