Abstract

A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
    [CrossRef]
  2. F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
    [CrossRef]
  3. L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
    [CrossRef]
  4. E. Ostby, L. Yang, and K. Vahala, Opt. Lett. 32, 2650 (2007).
    [CrossRef]
  5. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  6. H. Rokhsari, S. Spillane, and K. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
    [CrossRef]
  7. T. Carmon, L. Yang, and K. Vahala, Opt. Express 12, 4742 (2004).
    [CrossRef]
  8. G. Lin, B. Qian, F. Oručcević, Y. Candela, J. Jager, Z. Cai, V. Lefèvre-Seguin, and J. Hare, Opt. Lett. 35, 583 (2010).
    [CrossRef]
  9. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, Opt. Express 15, 13624 (2007).
    [CrossRef]
  10. R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
    [CrossRef]

2010 (1)

2007 (2)

2005 (1)

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

2004 (2)

H. Rokhsari, S. Spillane, and K. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

T. Carmon, L. Yang, and K. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef]

2003 (1)

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

2000 (1)

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

Bazzi, R.

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Brenier, A.

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

Cai, Z.

Candela, Y.

Carmon, T.

Dubreuil, N.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Dupriez, P.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Feron, P.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Hare, J.

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Jager, J.

Lefèvre-Seguin, V.

Lin, G.

Lissillour, F.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Oruccevic, F.

Orucevic, F.

Ostby, E.

Perriat, P.

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

Poulain, M.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Qian, B.

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Rokhsari, H.

H. Rokhsari, S. Spillane, and K. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Spillane, S.

H. Rokhsari, S. Spillane, and K. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Stephan, G. M.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

Tillement, O.

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Vahala, K.

Vahala, K. J.

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

Yang, L.

Appl. Phys. Lett. (2)

L. Yang, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 825 (2003).
[CrossRef]

H. Rokhsari, S. Spillane, and K. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Electron. Lett. (1)

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, Electron. Lett. 36, 1382 (2000).
[CrossRef]

J. Lumin. (1)

R. Bazzi, A. Brenier, P. Perriat, and O. Tillement, J. Lumin. 113, 161 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of the experimental setup. Pump laser and microlaser beams are shown in dashed blue and solid red, respectively. DM, dichroic mirror; RG, Schott filter RG850; SP1 and SP2, spectrometers.

Fig. 2.
Fig. 2.

Transmitted pump versus steps. Empty triangles: reference obtained for a large gap. Filled circles: dip observed for a gap of 150nm. The vertical arrow denotes the “absorbed pump power.” The dashed zone defines the spectra plotted in Fig. 3.

Fig. 3.
Fig. 3.

Emission spectra with increasing absorbed pump power for a step range denoted by the dashed rectangle in inset and Fig. 2. Inset: area of peaks A and B and of PL.

Fig. 4.
Fig. 4.

Simultaneous recording of the absorption dip and microsphere emission. Upper curves correspond to transmitted pump power. Black, reference transmission; blue, absorption dip; purple dotted, best fit to the theoretical transmission curve deduced from Eq. (1); lower red, measured laser emission; dashed black, pump laser frequency offset.

Fig. 5.
Fig. 5.

Light–light curve, for different scan speeds. Inset: corresponding transmitted pump and laser output curves.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dθdt=APincΔ2(t)+(γ/2)2γthθ(t),

Metrics